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Zusammenfassung

Zu Entscheidungen zu gelangen trotz unsicherer und unvollständiger Informationen, ist eines
der zentralen Themen der Statistik und des maschinellen Lernens. Probabilistische Bayesiani-
sche Modelle stellen dabei einen strengen mathematischen Rahmen für die Formalisierung der
Datengewinnung zur Verfügung, in dem getroffene Annahmen sowie vorhandenes Vorwissen
explizit gemacht werden. Die resultierende a-posteriori-Verteilung repräsentiert den Wissens-
stand des Modells und ist Ausgangspunkt für sich anschließende Entscheidungen.

Trotz aller begrifflichen Klarheit der Bayesianischen Inferenz haben die notwendigen Be-
rechnungen meist die Form analytisch unlösbarer hochdimensionaler Integrale, was in der
Praxis zu einer Reihe von randomisierten und deterministischen Näherungsverfahren führt.

Die vorliegende Arbeit entwickelt, studiert und wendet Algorithmen zur näherungsweisen
Inferenz und Versuchsplanung auf generalisierte lineare Modelle (GLM) an. Ein besonderer
Schwerpunkt liegt auf algorithmischen Eigenschaften wie Konvexität, numerische Stabilität
und Skalierbarkeit hin zu großen Mengen an wechselwirkenden Größen.

Nach einer Einführung in GLMs stellen wir die vielversprechendsten Ansätze zum Schät-
zen, zur näherungsweisen Inferenz und zur Versuchsplanung vor.

Wir untersuchen detailliert einen speziellen Ansatz und leiten Konvexitäts-Eigenschaften
her, was zu einem generischen und skalierbaren Inferenzverfahren führt. Desweiteren sind wir
in der Lage, den Zusammenhang zwischen Bayesianischer Inferenz und dem regularisierten
statistischen Schätzen genau zu beschreiben: Schätzen ist ein Spezialfall von Inferenz und In-
ferenz kann durch eine Folge von geglätteten Schätzern berechnet werden.

Im Anschluss daran vergleichen wir eine Reihe von Inferenzverfahren, angewendet auf
die binäre probabilistische Klassifikation mittels eines kernbasierten GLMs, dem sogenannten
Gauß-Prozess-Modell. Eine Reihe empirischer Experimente ermittelt den EP-Algorithmus als
das genaueste Näherungsverfahren.

In einem nächsten Schritt wenden wir den EP-Algorithmus auf die sequenzielle Optimie-
rung der Messarchitektur eines Bilderfassungssystems an. Dies unter Verwendung von Com-
pressive Sampling (CS), bei dem die intrinsische Redundanz in Signalen benutzt wird, um den
Messprozess zu beschleunigen. In vergleichenden Experimenten beobachten wir Unterschiede
zwischen dem Verhalten von adaptivem CS in der Praxis und dem theoretisch untersuchten
Szenario.

Durch Kombination der gewonnenen Erkenntnisse über adaptives CS mit unserem konve-
xen Inferenzverfahren sind wir in der Lage, die Messsequenz von Magnetresonanztomographie-
Systemen (MRT) zu verbessern, indem wir das Bayesianische Kriterium zur Versuchsplanung
optimieren. Unsere MRT-Anwendung auf Bildern realitischer Größe ermöglicht kürzere Mess-
zeiten bei gleichbleibender Bildqualität.
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Abstract

Decision making in light of uncertain and incomplete knowledge is one of the central themes
in statistics and machine learning. Probabilistic Bayesian models provide a mathematically
rigorous framework to formalise the data acquisition process while making explicit all relevant
prior knowledge and assumptions. The resulting posterior distribution represents the state of
knowledge of the model and serves as the basis for subsequent decisions.

Despite its conceptual clarity, Bayesian inference computations take the form of analytically
intractable high-dimensional integrals in practise giving rise to a number of randomised and
deterministic approximation techniques.

This thesis derives, studies and applies deterministic approximate inference and experi-
mental design algorithms with a focus on the class of generalised linear models (GLMs). Special
emphasis is given to algorithmic properties such as convexity, numerical stability, and scalabil-
ity to large numbers of interacting variables.

After a review of the relevant background on GLMs, we introduce the most promising
approaches to estimation, approximate inference and experiment design.

We study in depth a particular approach and reveal its convexity properties naturally lead-
ing to a generic and scalable inference algorithm. Furthermore, we are able to precisely char-
acterise the relationship between Bayesian inference and penalised estimation: estimation is a
special case of inference and inference can be done by a sequence of smoothed estimation steps.

We then compare a large body of inference algorithms on the task of probabilistic binary
classification using a kernelised GLM: the Gaussian process model. Multiple empirical com-
parisons identify expectation propagation (EP) as the most accurate algorithm.

As a next step, we apply EP to adaptively and sequentially design the measurement ar-
chitecture for the acquisition of natural images in the context of compressive sensing (CS),
where redundancy in signals is exploited to accelerate the measurement process. We observe
in comparative experiments differences between adaptive CS results in practise and the setting
studied in theory.

Combining the insights from adaptive CS with our convex variational inference algorithm,
we are able – by sequentially optimising Bayesian design scores – to improve the measurement
sequence in magnetic resonance imaging (MRI). In our MRI application on realistic image sizes,
we achieve scan time reductions for constant image quality.
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Chapter 1

Introduction

Science in general constructs models of the world from incomplete, uncertain and possibly
irrelevant or redundant information. Models or theories are built from particular experience
or experiments, but are intended to explain or predict general circumstances. Different fields
such as statistical science, mathematics and philosophy study the principle of inductive rea-
soning or equivalently, the adaptation of a process model in the light of observed data from a
physical process. Growing computational resources lead to the emergence of machine learning,
where adaptive and predictive systems are both theoretically and empirically studied. Machine
learning, as an empirical science, is a “loose confederation of themes in statistical inference and
decision making” [Jordan, 2009] with a focus on exploratory data analysis and computational
methodology. Strong ties to signal processing, linear algebra, and optimisation make machine
learning an interdisciplinary field trying to understand, apply and improve predictive models
developed in statistics, computer science and engineering.

1.1 Learning

Machine learning – being an important, active, modern and successful branch of artificial in-
telligence research – is concerned with the design of algorithms enabling machines to learn.
Learning is understood as automatic extraction of general rules about the population from a
small sample in order to make predictions and decisions. The term in statistics most equivalent
to learning is estimation. Computer scientists talk about soft computing. Learning cannot be
successful without any prior assumption on the regularity of the underlying mechanisms. The
goal of a researcher in machine learning is therefore to make as little assumptions as possible
and to make them as explicit as possible. One of the central challenges in machine learning is
the balance between learning and memorising, i.e. the trade-off between the general rule and
the particular data.

Prior assumptions According to the no-free-lunch theorems [Wolpert, 1996], all learning al-
gorithms perform equally well if averaged over all possible learning problems. Thus, prior
knowledge or prior assumptions on the particular problem at hand like smoothness of the un-
derlying function are indispensable for successful learning.

Available structure Since data is digitised and represented on a computer, every single da-
tum is described by a collection of numbers. Inference becomes possible due to additional struc-
ture in these numbers. Mutual dependencies, exclusive constraints or simply redundancy en-
ables predictions – it is impossible to predict one quantity from an independent other quantity.
Often this structure is congruent with mathematical objects like sets, graphs or vector spaces
allowing for operations such as addition and scaling. Besides the structure inside a single
data point, also relations between data points facilitate predictions. They can be formalised
by concepts like similarity, distance or covariance that establish pairwise relationships. Based on

1
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pairwise relations one can (at least approximately) embed data into linear spaces and exploit
their favourable analytical properties.

Feedback Learning from examples can be done in different settings, the simplest being super-
vised learning, where the target label is provided for every training point. Labelling is laborious;
hence semi-supervised learning uses unlabelled examples to improve predictions. Unsupervised
learning directly identifies relevant structure in the dataset itself, without any labelling given,
which helps is compression and visualisation. A weak form of feedback is used in reinforcement
learning, where targets are not provided explicitly, but a series of decisions is judged as a whole.

1.2 Probabilistic models

Real data is incomplete, redundant, noisy and partially irrelevant to the problem at hand, mod-
els are only abstractions necessarily neglecting some details and even the world itself is not de-
terministic. Therefore, any machine learning algorithm has to deal with uncertainties originat-
ing from various sources. A proper treatment of uncertainty includes representation, updating
and quantification of confidence in light of a prediction task.

Coping with noise by designing robust algorithms that are insensitive to small changes
of data or large changes of a tiny fraction of data is dangerous. This deterministic approach
ignores possibly relevant structure. For a principled approach to design of predictive models,
explicit inclusion of noise models is indispensable.

The language of probability theory has many advantages. First of all, it is a natural way
to describe ignorance or missing knowledge. Second, all assumptions have to made explicit
since the calculus of probabilities is incorruptible – only a fully specified model allows proper
inference. And third, probabilistic models have a standardised and normalised interface to the
outside world facilitating composition of systems: a probability. Thus, if hierarchical models
are to be built or sequences of designs have to be made, there is no way around probabilistic
models.

Unfortunately, heavy computational challenges due to high-dimensional integrals lurk be-
hind the formal beauty of a fully probabilistic model. There are two ways around: either,
approximations are inevitable or tractable models have to be used. In practice, the by far
most tractable multivariate distribution over continuous variables is the Gaussian distribution.
Computations with Gaussians reduce to linear algebra, which makes them tractable in high
dimensions. Sums of many random variables behave like a Gaussian, the Gaussian is the least
structured density – there is a long list of favourable properties making the Gaussian family the
major working horse in approximate inference. One central idea of this thesis is to make strong
use of the “Gaussian toolbox”: Gaussian approximations, Gaussian distributions, Gaussian
scale mixtures, Gaussian processes, Gaussian quadrature, and the Gauss-Newton algorithm
etc. in order to deal with high-dimensional integrals in Bayesian inference.

On the other hand, a model should be as simple as possible. Therefore, modelling a high-
dimensional density might be a waste of resources if only a single decision is the goal of the
analysis. Direct, not necessarily probabilistically motivated prediction models might work as
well.

The axioms of probability and the induced calculus are mathematically not debatable. How-
ever, people interpret probabilities differently: either as relative frequencies of many repetitions
of the same experiment or as a belief reflecting the lack of knowledge of the current state of na-
ture. Feeling that too much paper and ink have been wasted to only insist on the differences,
we want to stress the complementary but not exclusive nature of the Bayesian and frequentist
points of view and rather think of them as displaying their respective strengths in different
application settings as detailed in chapter 2.1.
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1.3 Summary of the contributions

The thesis at hand includes theoretical, empirical and algorithmical insights. Further it puts
material and ideas into perspective and provides code. Core machine learning techniques are
applied to image acquisition and medical imaging. The basic theme is the generic goal to
render Bayesian analysis feasible via approximate algorithms exploiting standard techniques
from numerical mathematics, signal processing and optimisation while staying as generic and
scalable as possible.

The study of convexity properties of variational inference as detailed in chapter 3 is a the-
oretical contribution. The scalable double loop algorithm from chapter 3 and its application
to magnetic resonance imaging in chapter 6 as well as the ideas about how to run expectation
propagation efficiently on a medium scale in a sequential fashion of chapter 5 are part of the
algorithmical contribution. Our finding that a simple measurement heuristic shows clear ad-
vantages over randomised acquisition in chapter 5 suggests that second order structure is un-
derrepresented in theoretical research on compressive sampling. Empirical observations and
comparisons of approximate inference techniques are given in chapter 4. Finally, we can con-
clude that the Bayesian method bears advantages if used for subsequent experimental design,
where a correct quantification of uncertainty is needed.

1.4 Outline of the thesis

The thesis comprises an introductory chapter (1), a chapter discussing the basics of statistical
inference (2), four technical chapters (3, 4, 5, 6) and a final chapter providing a summary (7).
The chapter dependency DAG (directed acyclic graph) is given below.

Chapter 5
Adaptive image acquisition

↗ ↘
Chapter 1 −→ Chapter 2 −→ Chapter 3 −→ Chapter 6

Introduction Generalised linear models Convex Bayesian inference Magnetic resonance imaging
↘ ↓ ↘ ↓

Chapter 4 −→ Chapter 7
Gaussian process classification Conclusion

Table 1.1: Thesis chapter dependency graph

After a review of the most prominent approximation techniques for Bayesian inference in
continuous models in chapter 2, chapter 3 gives a characterisation of the convexity properties
of a particular relaxation to variational inference along with a scalable algorithm. Subsequently,
chapter 4 applies the framework to probabilistic classification and provides empirical insights
into the behaviour of the inference procedures in practise; expectation propagation being the
most accurate one. The following two chapters apply the experimental design methodology
to image acquisition: first, we show in chapter 5, how to operate the expectation propagation
machinery in the regime of a few thousand data points and empirically demonstrate the ad-
vantages of adaptive compressive sampling over random designs. Second, we scale the model
of chapter 5 to realistic image sizes and employ the algorithm of chapter 3 for inference. In
chapter 6, we describe the resulting feasible offline optimisation scheme that allows adjusting
the magnetic resonance image acquisition process in a data driven way. As a result, we are able
to not only reconstruct images from undersampled measurements but to sequentially select the
measurements to make the undersampled reconstruction as faithful as possible.

1.5 Publication record

Most of the material of this thesis is already published, only parts are currently under review for
publication. The study about approximate inference schemes for binary Gaussian process clas-
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sification [Nickisch and Rasmussen, 2008] and the associated code [Rasmussen and Nickisch,
2010] is presented in chapter 4, the application of Bayesian experimental design to compres-
sive sensing of natural images [Seeger and Nickisch, 2008a] is included in chapter 5. Chapter
3 introduces a convex algorithm for large-scale inference [Nickisch and Seeger, 2009, Seeger
and Nickisch, 2008b, 2010, submitted] and chapter 6 details the benefits of optimising the k-
space trajectories for Magnetic Resonance Image acquisition as published in Seeger, Nickisch,
Pohmann, and Schölkopf [2009] and Seeger, Nickisch, Pohmann, and Schölkopf [2010].

Some material from the domain of computer vision has been omitted because it does not
thematically fit into the exposition. In particular, the approach to learn object detectors from an
intermediate attribute layer rather than from simple features [Lampert, Nickisch, and Harmel-
ing, 2009] is not included. We did not incorporate the training and test methodology for in-
teractive image segmentation systems [Nickisch et al., accepted]. The project using Gaussian
process latent variable models for density modelling [Nickisch and Rasmussen, in press] is not
part of the thesis, as well.



Chapter 2

Inference and Design in Linear Models

Suppose we are given a vector of observations y = [y1, .., ym]
> with corresponding covariates

or data X = [x1, .., xm]
> and we wish to model the functional relationship f : x 7→ y between

them. Among all possible functions f , the class of linear functions fu(x) = ∑n
j=1 xjuj = x>u with

weight vector u sticks out: they are simple to handle, very intuitive and enjoy many favourable
analytical and algorithmic properties.

In the following chapter, we will first introduce some concepts of statistical inference in a
general setting and apply them to the modelling of dependencies x 7→ y. We will then intro-
duce and discuss estimation, inference and experimental design in linear models with Gaussian
noise. Further, we will look at two generalisations thereof: the generalised linear model (GLM),
where the likelihood can be non-Gaussian, and the Gaussian process (GP) model, a kernelised
variant, where the functional dependency is linear in a different space and thus non-linear in
the covariates X.

Generalised linear models are cornerstones of applied statistics and machine learning. The
domains of application range from computer vision, bioinformatics over adaptive filtering and
control to neuroscience as well as information retrieval.

The goal of the chapter is to set up a consistent notation and to deliver a high-level overview
of the connections between the probabilistic models and inference techniques used in this the-
sis, especially the theoretical chapter 3. All following application chapters 4, 5 and 6 contain
back references but can nevertheless be read on their own. Also, the chapter contrasts frequen-
tist and Bayesian techniques to provide a better link to the statistics literature.

2.1 Statistical inference and decision theory

Statistical inference in its most general form is the process of drawing conclusions from a prob-
abilistic model given a finite sample – the datasetD. Another term expressing the same thing is
induction or learning from examples, where general rules are obtained from a few representative
observations. Probabilistic models are supposed to mimic aspects of noisy physical processes
in the real world. We denote them formally by a family of distributions Pρ(D) over the dataset
D with unknown parameter ρ. The resulting conclusions are intended to either yield a pre-
diction of what is going to happen in the future, what could have happened in the past or to
lead to a specific decision suggesting an interaction with the world. Probability theory is the
natural way to represent noise in the data acquisition process or incomplete knowledge of the
underlying process itself.

We will focus on decision making in the following since conclusions of any kind drawn
from the data can be seen as a decision; decision theory allows a unified treatment of point
estimation, interval estimation and hypothesis testing. A decision is modelled by a decision
function δ : D 7→ ρ̂ that – based on the data D – outputs a specific choice ρ̂ for the unknown
parameter ρ of the model. The quality of a specific decision is formalised by a loss function
`(ρ̂, ρ) ∈ R that measures how much it costs if we use ρ̂ given that the actual value is ρ. It is a

5
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measure of discrepancy between the decision ρ̂ = δ(D) and the parameter ρ.
Treating the probabilistic model Pρ(D) as fixed for now, the risk of using the decision rule δ

R(δ,D, ρ) = `(δ(D), ρ) (2.1)

depends on two quantities: the data D and the parameter ρ. There are two complementary
approaches to designing decision functions δ differing in the respective probabilistic interpre-
tation of D and ρ: the Bayesian and the frequentist or Fisherian perspectives. Both schools
have their relative merits and shortcomings and many practical problem settings such as ex-
perimental design can benefit from the interplay of both [Bayarri and Berger, 2004].

The following exposition is based on an inspiring lecture [Jordan, 2009] and a comprehen-
sive book [Schervish, 1995, ch 3].

2.1.1 Frequentist decision theory

At the core of the frequentist approach is the interpretation of the dataset as being a sample of
a random variable. Therefore the frequentist risk or generalisation error

RF(δ, ρ) = EPρ(D) [`(δ(D), ρ)] (2.2)

is defined as the expected risk (equation 2.1) over the dataset. This eliminates the dependency
on D based on the idea that our specific dataset is only one possible realisation; we could
have gotten different ones. Unfortunately, the expectation cannot be done analytically in most
interesting cases.

Theoretically, there are at least two strategies to select an optimal decision function δ?. The
minimax estimator

δ? = arg min
δ

max
ρ

RF(δ, ρ)

is the most pessimistic estimate. It chooses the decision function in light of the most adversarial
parameter that exists. While offering clear worst-case guarantees, a minimax estimate can turn
out to be overly pessimistic in practice, where the average case scenario is captured by the
minimal Bayes risk estimator or Bayes estimator

δ? = arg min
δ

EP(ρ) [RF(ρ, δ)] = arg min
δ

RA(δ).

The average risk or Bayes risk RA(δ) is the expected risk under a prior distribution P(ρ) over
the parameters qualifying therefore as a hybrid method between the Bayesian and frequentist
points of view.

In general, frequentist methods are designed to give trustable answers if used repeatedly.
For example in software engineering, where many users run a system on many different inputs,
minimax parameter estimates are appropriate.

Structural and empirical risk minimisation

Since the expectation EPρ(D) [`(δ(D), ρ)] over the dataset in the generalisation error RF(δ, ρ) is
most likely intractable, one has to resort to approximation or bounding techniques.

One approach derives upper bounds on the risk BF(δ, ρ) ≥ RF(δ, ρ) and uses them as
building blocks to shape the objective characterising the estimator. Known under the name
of structural risk minimisation (SRM) [Vapnik, 1998], it is a successful principle for overfitting
prevention in linear classification models, where the SRM term is a function of the margin of
the separating hyperplane. SRM implements the principle of complexity control by limiting
the capacity of the predictor.

The upper bound of the SRM approach alone is not sufficient to train a predictor since it
does not depend on the data D. By replacing the expectation EPρ(D) [`(δ(D), ρ)] with an em-
pirical sum over the particular dataset D, one gets an estimate for the generalisation error, the
so-called empirical risk R̂F(δ, ρ) giving rise to the principle of empirical risk minimisation (ERM).
Better estimates can be obtained by resampling techniques such as bootstrapping, leave-one-
out estimators or cross-validation (CV) [Wasserman, 2005].
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Binary classification

In support vector machines (SVMs) [Schölkopf and Smola, 2002], both SRM and ERM are used.
There are also approaches to include the minimax principle [Davenport et al., 2010]. Here,
δu(x) = sign(u>x) is a linear classifier parametrised by the weights u whose quality is mea-
sured by the hinge loss `(x, y, u) = max(0,−y · u>x). The empirical risk, a simple sum over the
dataset R̂F(u) = ∑m

i=1 `(xi, yi, u), is combined with the complexity penalty u>u into the regu-
larised risk u>u + C · R̂F(u), where C balances the relative contributions. The parameter C is
typically set by minimising a CV estimate of RF(δu, C).

2.1.2 Bayesian perspective

Also starting from the risk of equation 2.1, the Bayesian method computes an average over
parameters rather than over the data

RB(D, δ) = EP(ρ|D) [`(δ(D), ρ)] . (2.3)

The expectation is taken w.r.t. the posterior distribution P(ρ|D) that is obtained by applying
Bayes’ rule

P(ρ|D) = P(ρ)P(D|ρ)∫
P(ρ)P(D|ρ)dρ

=
P(ρ)P(D|ρ)

P(D) (2.4)

that follows from the definition of conditional probability. Here, the prior P(ρ) describes the
initial belief about the parameter ρ, the posterior P(ρ|D) contains the uncertainty about ρ after
seeing the data D and the likelihood of the parameters or sampling distribution P(D|ρ) can
generate synthetic data given a fixed parameter ρ. The normaliser P(D) is termed the marginal
likelihood or evidence and is used to compare models (see section on marginal likelihood II and
Bishop [2006], MacKay [2005]).

Optimal decisions using Bayes estimators are obtained by minimising the risk of equation
2.3

δ? = arg min
δ

RB(D, δ).

For some loss functions `, the Bayes estimators can be computed exactly and correspond to
specific properties of the posterior P(ρ|D) as listed in the following table.

loss function `(ρ̂, ρ) ‖ρ̂− ρ‖2 ‖ρ̂− ρ‖1 ‖ρ̂− ρ‖0
Bayes estimator ρ̂ = δ?(D) mean centroid (multivariate median) mode

Table 2.1: Loss functions and Bayes estimators

The maximum a posteriori (MAP) estimator selecting the posterior mode is simple to com-
pute in practice, but – as any Bayesian estimator – it has two inconvenient properties: first, the
loss function is questionable since it penalises all parameters except for the correct ρ by the
same amount. Second, it is not invariant under a reparametrisation ξ : ρ 7→ ξ(ρ) (continuous
bijection) since in general, we have

ξ

(
arg min

ρ
P(ρ|D)

)
6= arg min

ξ
P(ξ(ρ)|D)

∣∣∣∣det
(

∂ξ(ρ)

∂ρ>

)∣∣∣∣
implying that we can move around the mode as much as we want by changing the Jacobi
correction term |det( ∂ξ(ρ)

∂ρ> )|. Equality holds for linear transformations ξ. Bayesian estimators
are only invariant under reparametrisation if the loss is transformed as well (see appendix D.3).
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Binary classification

In the example of binary pattern classification, where a class y?∗ ∈ {0, 1} has to be assigned to
a pattern x∗, the Hamming loss `(ŷ, y) = ŷ · (1− y) + (1− ŷ) · y is appropriate if there is no
prior information on the class labels available. From the posterior P(ρ|D), we can compute the
predictive distribution

P(y∗|D) =
∫

P(y∗|ρ)P(ρ|D)dρ

and take the Bayesian expectation of the loss function

RB(D, ŷ∗) =
∫

P(y∗|D)`(ŷ∗, y∗)dy∗ = P(1− ŷ∗|D) = 1−P(ŷ∗|D).

The optimal decision rule is hence given by

y?∗ = arg min
ŷ∗

RB(D, ŷ∗) = arg max
ŷ∗

P(ŷ∗|D) =
1
2
+

1
2

sign
(

P(ŷ∗ = 1|D)− 1
2

)
that is, we have to choose the most probable class y?∗ in order to obtain the optimal decision.
Here, sign(x) ∈ {±1} computes the sign of x, where 0 is mapped to +1.

Maximum likelihood II and hyperparameters

Sometimes, it is useful to treat some parameters θ ⊂ ρ in a slightly different way by interpreting
them as hyperparameters. A hyperparameter, in loose terms, is a parameter at a higher level in a
hierarchical model such as the weight C between the terms in SVM models (section 2.1.1) or a
parameter for which correct marginalisation is very hard.

The maximum likelihood II approach, sometimes called marginal likelihood or evidence max-
imisation proceeds by computing the posterior of the hyperparameters

P(θ|D) ∝ P(D|θ)P(θ),

where P(D|θ) is the marginal likelihood for a fixed hyperparameter value θ. Using MAP esti-
mation, the mode

θ? = arg max
θ

P(θ|D)

is computed and used subsequently instead of P(θ|D). All criticism made to MAP estimation
applies to that approach but also all asymptotic virtues of maximum likelihood are present,
making this empirical Bayes strategy always a pragmatic decision in light of computational com-
plexity or analytical intractability.

Although conceptually very elegant and clear, the Bayesian viewpoint has been criticised
for its subjectivity introduced by the choice of prior. However, if a domain expert provides
valuable prior knowledge, why shouldn’t we use it? The Bayesian approach is most suited to
applications, where repetition is not the major concern but an assessment of a concrete task on
a concrete dataset is at the focus of interest. Its elegance is due to the fact that every quantity
in the model is treated as a random variable. Modelling corresponds to making explicit the
statistical dependencies between the random variables. A prediction is done by computing
the marginal distribution w.r.t. the variable of interest and decision making corresponds to
selecting the point estimate minimising the expected loss under the predictive distribution.
Even though these guidelines are very clear in theory, in practice most of the integrals are
intractable; therefore most of the work goes into approximate numerical integration methods
as detailed in section 2.5.
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2.2 The Gaussian linear model

The Gaussian linear model for linear dependencies x 7→ y is a very interesting special case of
a parametric model, where both inference and estimation are analytically tractable and closely
related to each other.

Assuming independence between individual measurements yi and normally distributed
additive errors ε i ∼ N (0, σ2) we get the linear relation

yi = fu(xi) + ε i, i = 1..m, y = Xu + ε (2.5)

between the covariates X and the observations y summarised by the likelihood function

P(y|u) =
m

∏
i=1

P(yi|x>i u) = N (y|Xu, σ2I).

2.2.1 Frequentist estimation

In case we want to come up with a single representative û for the unknown weight u to be used
in subsequent predictions, a common approach is to consider the popular maximum likelihood
(ML) estimator

ûML = arg max
u

P(y|u) = arg min
u

[− ln P(y|u)] ,

where − ln P(y|u) is called the data fit term. Informally, the ML estimator can be interpreted as
a MAP estimator under a flat prior. Besides several invariance properties (see appendix D.2),
the ML estimator has a lot of asymptotic properties: it is asymptotically unbiased1, efficient2 and
normal3.

For Gaussian likelihood, the ML estimator is also called the ordinary least squares (OLS)
estimator

ûOLS = arg max
u
N (y|Xu, σ2I) = arg min

u
‖Xu− y‖2 ⇔ X>XûOLS = X>y (2.6)

minimising the squared distance between predictions and measurements. The estimator ûOLS
is a random variable with mean E [ûOLS] = u, covariance matrix V [ûOLS] = σ2(X>X)−1 and
Gaussian distribution. Note that the unknown u is regarded as a deterministic quantity. If
the normal equations (equation 2.6) are underdetermined or badly conditioned, regularised or
penalised least squares (PLS) estimators

ûPLS = arg min
u

γ−1 ‖Bu‖p
p + ‖Xu− y‖2 (2.7)

can be used, where ‖Bu‖p
p is called the regulariser, and where the matrix B ∈ Rq×n encodes the

domain of penalisation. Via B = I, we directly penalise large values of u, and by setting B to the
finite difference matrix, we can penalise high deviations between neighbouring components of
u. As a result, the absolute values of the components of ûPLS will be smaller than the absolute
value of ûOLS since the penaliser ‖Bu‖p

p will shift the optimal value towards 0. This behaviour is
typically denoted by the term shrinkage [Stein, 1956, Copas, 1983]. In LS-estimation, shrinkage
does not depend on the measurements y and is therefore non-adaptive or non-selective. Shrinkage
estimators are an active research topic in statistics. Especially, p = 1 [Tibshirani, 1996, Breiman,
1995] recently attracted a lot of attention as the LASSO (least absolute shrinkage and selection
operator) because the resulting estimators are sparse with many entries being zero. For B = I
and p = 2, the technique is known as ridge regression in statistics [e.g. Hastie et al., 2009] or
Tikhonov regularisation [Tikhonov and Arsenin, 1977] in the inverse problems literature.

1limm→∞ E[ûML]− u = 0
2limm→∞ V[ûML]−V = 0, where V is the variance from the Cramér-Rao lower bound of section 2.6.1.
3ûML

m→∞∼ N (E[ûML], V[ûML])
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2.2.2 Bayesian inference

By combining a prior distribution P(u) over the unknown weights u with the likelihood P(y|u),
we obtain the posterior distribution P(u|y) ∝ P(u)P(y|u), which represents the remaining un-
certainty about the unknown and therefore random weights u in Bayesian inference. Assuming
a Gaussian prior P(u) ∝ ∏

q
i=1N (si|0, σ2γi), where s = Bu, the posterior is of the form

P(u|y) = N
(

u|A−1X>y, σ2A−1
)

, Γ = dg(γ), A = X>X + B>Γ−1B. (2.8)

Therefore, the outcome of a Bayesian procedure is the posterior distribution over u in contrast
to a single estimate û. Note that for full rank X>X, the OLS and the PLS estimators correspond
to maxima of posteriors (MAP) with prior variances σ2γi being all equal γ = γ1, which holds
for many other estimators, as well.

ûPLS = arg max
u

P(u|y), p = 2

ûOLS = arg max
u

P(u|y), γ→ ∞

In the linear Gaussian case, mean, mode and centroid are the same, which means that the
ûOLS and ûPLS for p = 2 all coincide with the Bayesian estimator under a wide range of loss
functions. When it comes to variance/covariance estimation and to experimental design based
thereupon, however, there are quite severe differences (see section 2.6.6).

2.3 The generalised linear model

Often, the observations y cannot be described by linear functions of the covariates X directly.
For example, in binary classification, the class probabilities are numbers between 0 and 1. Count
data is strictly positive imposing non-negativity constraints on y. In both cases, y cannot be
modelled as a noisy version of Xu. A generalised linear model (GLM) [Nelder and Wedderburn,
1972] assumes that an observation y follows an exponential family distribution whose mean is a
nonlinear function of x>u. In other words, the likelihood P(y|u) can be written as P(y|x>u). A
concise treatment is given in McCullagh and Nelder [1989]; logistic regression is discussed by
Hastie et al. [2009, §4.4]. Formally, a GLM consists of a linear predictor η = Xu and a pointwise
link function g : µ 7→ η relating the linear predictor to the expectation E [y] = µ = g−1(η).
Often, the variance, V [y] is a simple function of the mean µ. Table 2.2 lists three common
choices of link functions along with their inducing likelihood.

Exponential family distribution Normal y Poisson y Binomial y
Name of the link function g identity log logistic
Name of the GLM regression Poisson regression logistic regression
mean E [y] = µ = g−1(η) µ = η ∈ R µ = eη ∈ R+ µ = 1

1+e−η ∈ [0, 1]
variance V [y] = v(µ) σ2 µ µ(1− µ)

likelihood P(y|u) = P(y|x>u) N (y|x>u, σ2) µy

y! e−µ, µ = exp(x>u)
(
1 + exp(−y · x>u)

)−1

Table 2.2: Common link functions in the generalised linear model

With these definitions in place, one can – for a fixed parameter u and say logistic link –
predict y∗ from x∗ via

E [y∗] =
1

1 + exp(−x>∗ u)
, V [y∗] = E [y∗] (1−E [y∗]) .
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2.3.1 Frequentist estimation

Model fitting is done using the ML estimator

ûML = arg min
u

[
−

m

∑
i=1

ln P(yi|x>i u)

]
= arg min

u
`(Xu).

One approach for the optimisation of `(Xu) w.r.t. u is the Newton-Raphson algorithm, where
a local quadratic approximation to ` is minimised in every iteration step. The Newton descent
direction d is computed from the gradient vector g and the Hessian matrix H by d = −H−1g.
Defining the negative log-likelihood vector ` with `i = `i(x>i u) = − ln P(yi|x>i u) as well as its
first two derivatives `′ =

[
`′i(x

>
i u)

]
i and L′′ =

[
`′′i (x

>
i u)

]
ii, we obtain

g =
∂`(Xu)

∂u
= X>`′ and H =

∂2`(Xu)
∂u∂u>

= X>L′′X

leading to the linear system

d = −H−1g⇔ X>L′′Xd = −X>`′,

which is an L′′-reweighted variant of the LS problem in equation 2.6, where −`′ takes the
role of y. Therefore the Newton-Raphson algorithm to find the ML estimator in GLMs is called
iteratively reweighted least squares (IRLS) [Green, 1984] .

2.3.2 Bayesian inference

As in the Gaussian linear model, Bayesian inference starts with a prior P(u). The likelihood
function P(y|u) is no longer restricted to be Gaussian rendering the posterior P(u|y) analyt-
ically intractable in most cases. Therefore, approximate inference techniques enter the stage.
We will discuss these in section 2.5; for a good overview see Bishop [2006, Ch. 10].

2.4 The Gaussian process model

In many applications, the functional relationship f between data points x and observations y
is non-linear even though the noise might still be Gaussian. Gaussian process (GP) models are
a powerful nonparametric way to make inference over nonlinear functions f . They were used
in geostatistics under the name kriging [Matheron, 1973], applied to spatial statistics [Ripley,
1981] and brought as a high-dimensional regression tool into machine learning [Williams and
Rasmussen, 1996] with proper probabilistic interpretations. We will informally motivate them
as linear models in high-dimensional feature spaces and show that the computations have the
same structure as in the linear case.

Explicit feature expansion

One approach to transfer linear technology to non-linear models proceeds by defining explicit
basis or feature functions ψ1(x), .., ψd(x) and assuming the function to be linear in ψj(x) instead
of xi itself

yi = f (xi) + ε i =
d

∑
j=1

ujψj(xi) + ε i = u>ψ(xi) + ε i.

Estimation, inference and design are exactly the same as in the linear Gaussian case, only the
data matrix X has to be replaced by the feature matrix Ψ = [ψj(xi)]ij in all computations. How-
ever, if the number of feature functions d becomes large4, ML estimation cannot be successful
due to the big number of parameters. One has to resort to regularised estimators or Bayesian
inference.

4We could choose all polynomials up to degree 3 leading to d = n3, where n is the dimension of a data point xi.
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Figure 2.1: Graphical model of the general posterior
Graphical model of the general posterior P(u|D) as a factor graph of Gaussian potentials on ri
and non-Gaussian potentials on sj. The variables u are densely coupled. Distribution models
of this sort are called undirected graphical models or Markov random fields [Lauritzen, 1996].

Implicit feature functions and the function space view

A dual approach using implicit feature functions is known as the function space view on GPs
[Rasmussen and Williams, 2006, Seeger, 2004]. Starting from a Gaussian prior on the weights
P(u) = N (u|0, I) of the basis expansion for f (x) in terms of the feature functions ψi(x), we can
compute the mean and covariance of the Gaussian distribution over f = [ f (x1), .., f (xm)]

> =
Ψu as

E [f] = ΨE [u] = 0 and V[f] = E
[
ff>
]
= ΨE

[
uu>

]
Ψ> = ΨΨ> =: K.

Hence, we can write P( f |X) =: P(f) = N (f|0, K) to emphasise that we deal with a distribution
over functions f specified at the locations xi. Here, the matrix K contains the covariances Kij =

k(xi, xj) = [ψ(xi)]
> ψ(xj). We say that the function f (·) follows a GP prior distribution with

covariance function k(·, ·) and mean function m(x) = 0: f (·) ∼ GP (m(·), k(·, ·)). This enables
us to do Bayesian inference over the latent function values f = [ f1, .., fm]> instead of the weights
u = [u1, .., ud]

>. We do not have to compute a single evaluation of ψ(xi) explicitly; the feature
functions enter only implicitly through the positive definite covariance function k(·, ·). This
property became popular under the name kernel trick. Therefore, the dimension of the feature
space d becomes computationally irrelevant since the complexity scales with m3 rather than d3.
GPs are a member of the family of kernel machines [Schölkopf and Smola, 2002] – kernel being
only a synonym for covariance function.

Gaussian process regression and linear regression

To see the strong formal similarities with linear Gaussian regression, we consider a GP model
with Gaussian likelihood P(yi| fi) = N (yi| fi, σ2

n). The posterior distribution is given by

P(f|y) ∝ N (f|0, K)N (y|f, σ2
nI)

= N (f|σ−2
n A−1y, A−1), A = K−1 + σ−2

n I,

which can be recognised as an instance of equation 2.8 with σ = 1, B = I, γ = σ2
n and the

formal replacements X>y← y, X>X← K−1.
In case of non-Gaussian likelihood functions for classification or robust regression, the pos-

terior cannot be computed in closed form as in the linear Gaussian case, but as it can be seen in
the next section, we have a wide range of approximate inference techniques available that also
apply to the nonlinear case.

2.5 Approximate Bayesian inference

In the following, we will look at GLMs with Gaussian and non-Gaussian contributions. We
will develop a unifying notation and introduce the most prominent methods allowing us to
compute an approximation to the Bayesian posterior.
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2.5.1 Modelling framework

We start from two observations: first, a GLM (see section 2.3) can have different link functions
for different components of the linear predictor η. For example y3 could be Gaussian but y11
could be Poisson. Second, the prior needed for Bayesian inference can formally be treated in
the same way as the likelihood. For example, we can rewrite a general Gaussian prior P(u) =
N (u|µ, Σ) as a product of one-dimensional distributions acting on linear projections of the
unknown variable u

P(u) = N (u|µ, Σ) = N
(

V>µ|V>u,
σ2

σ2 Λ

)
=

CN︷ ︸︸ ︷
σn |Σ|− 1

2 N
(

σΛ−
1
2 V>µ|σΛ−

1
2 V>u, σ2I

)
:= CN ·

n

∏
i=1
N
(

yj|x>j u, σ2
)
= CN · N

(
y|Xu, σ2I

)
, X := σΛ−

1
2 V>, y := σΛ−

1
2 V>µ,

where Σ = VΛV> is the eigenvalue decomposition of the covariance matrix and the factor CN
is constant in u.

In the following, we will call a 1-dimensional distribution acting on a linear projection of u
a potential. This has the advantage, that we can talk about prior and likelihood using the same
term. In general, potentials do not need to be normalised; we only assume that the posterior is
properly normalisable and decomposes into a product of Gaussian potentialsN (yi|ri, σ2), ri =
x>i u and non-Gaussian potentials Tj(sj), sj = b>j u

P(u|D) =
1
Z

CN
m

∏
i=1
N (yi|x>i u, σ2) · CT

q

∏
j=1
Tj(sj)

∝ N (y|Xu, σ2I)
q

∏
j=1
T (sj), Z = P(D) = CNCT ·

∫
N (y|Xu, σ2I)

q

∏
j=1
Tj(sj)du.

The factors CN and CT are normalisation constants needed to evaluate the marginal likelihood
Z = P(D) correctly and they originate from our need to write P(u|D) as a product of individ-
ual potentials on linear projections of u. Figure 2.1 depicts the decomposition of P(u|y) into
potentials; note that we have a fully connected model with dense matrices X and B so far and
figure 2.2 gives an overview of the potentials we use. In classification, the likelihood consists
of Bernoulli potentials and the prior contains Gaussian potentials. In sparse classification, the
prior would include Laplace potentials leading to a completely non-Gaussian model. They do
all fit under the umbrella of posterior distribution given as a product of potentials. Making the
GLM perspective more apparent, we can write[

r
s

]
=

[
X
B

]
u, y = r + ε, ε i ∼ N (0, σ2).

Now that we have fixed the class of models, let us look at some desiderata we have for
inference algorithms.

2.5.2 Inference algorithm properties

The first property, we want, is generality. We want the inference procedure to not only work
for a specific potential but for a large class of them. For example, super-Gaussian potentials
will play a prominent role. Secondly, we want the inference algorithm to be scalable. We want
the computational complexity not to increase too strongly if the number of potentials m + q
increases. At best we want O(m + q). The third property is efficiency meaning that all available
structure in the dependencies represented by X and B is used to make the computations as fast
as possible. Applications with ∼ 105 potentials require generality, scalability and efficiency.
Otherwise estimation, inference and experimental design are impossible.
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Classification, class c Regression
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Figure 2.2: Super-Gaussian potentials
Non-exhaustive list of usable potentials T (s) and their analytical expressions. We have the
Gaussian potential for regression, the logistic, Laplace and Student’s t potentials for robust
regression and the cumulative Gaussian and logistic for classification. We also show the poten-
tials in the log domain to make their asymptotic tail behaviour apparent: Laplace, logistic and
cumulative logistic are asymptotically linear, Gaussian and cumulative Gaussian are asymp-
totically quadratic and Student’s t has logarithmic asymptotics in the log domain.

Nowadays, inference engines such as Infer.NET [Minka et al., 2009] offer convenient access
to general purpose inference code. However, the fully connected structure of our GLMs makes
efficient inference in large models difficult for such a general solver because explicit awareness
of the specific model structure leads to substantial computational benefits.

2.5.3 Approximations to achieve tractability

Bayesian inference is appealing from a conceptual point of view; however, there are many al-
gorithmical challenges when attempting a tractable implementation on a computer. Therefore,
approximations have to be made at various stages to achieve tractability.

Formal tractability means that beliefs about the model can be cast into a probability distri-
bution at all. Very often the choice of model is guided by the available distributions; the often
used term convenience prior criticises specific prior choices because they are often selected due
to their usability.

In the following, the motivation for approximations is twofold: on the one hand there is the
problem of analytical intractability of posterior distributions leading to approximations based on
tractable distributions. On the other hand there will be the problem of computational intractabil-
ity if the size of the inference problem is too big to enable efficient computations.

Analytical tractability can be achieved by representing the posterior by a member Qς(u) of
a tractable parametric family of distributions parametrised by ς. The most important families
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include delta distributions Qς(u) = δ(u− û) = limε→0N (u|û, εI) with ς = û, factorial distri-
butions Qς(u) = ∏i Qςi(ui) and Gaussian distributions Qς(u) = N (u|m, V) with ς = (m, V).
They facilitate the calculation of expectations, and thus enable analytical decision making.

Computational tractability is a problem if large amounts of data have to be processed, even
with an analytically tractable model. Two solutions are possible: approximate computations or
dataset subsampling. We will examine approximate inference in linear Gaussian models in
detail in the next section, where standard methods from linear algebra are used to approximate
the posterior.

All algorithms discussed in the following are – of course – formally tractable, however
only the Gaussian case is analytically tractable. Even though, all methods are computationally
tractable, they differ in how the computational effort scales with growing number of potentials
p = n + q. The critical point in achieving scalability with p is whether one can formulate the
algorithm based on few evaluations of efficient primitives such as fast matrix vector multiplica-
tions (MVM) with the matrices X and B. This is possible in the Gaussian model (section 2.5.4),
for conjugate gradient (CG) approaches to MAP inference (section 2.5.6), using a fixed-point
for factorial approximations (section 2.5.7 and Miskin [2000]). Proper variational approaches
are harder to handle using few MVMs only. Expectation propagation (section 2.5.10) and KL-
divergence minimisation (section 2.5.8) require many of them. Only the variational relaxation
(section 2.5.9 and chapter 3) allows a decomposition of the objective so that approximate infer-
ence becomes scalable.

2.5.4 The Gaussian linear model

Bayesian inference in the Gaussian linear model is analytically feasible, however for large num-
bers of variables m+ q, the computations become computationally challenging due to the sheer
size of the matrices X and B. We use the setting of section 2.2.2 and wish to compute the poste-
rior mean m = EP(u|D)[u] and its covariance V = VP(u|D)[u], where

m = A−1X>y, V = σ2A−1, A = X>X + BΓ−1B.

The mean m is given by the solution of the linear system Am = b := X>y. Linear systems can
be solved exactly by decomposing the matrix A, e.g. by the Cholesky decomposition, which
costs O(n3). However, if n, the size of A, becomes overly large, the computation becomes
prohibitive; even the explicit storage of A is impossible if n > 105.

If A does not have further exploitable structure, we simply cannot compute the mean m. We
use “having exploitable structure” interchangeably with “enabling fast MVMs” – faster than
O(n2). Fast MVMs can be the consequence of A being sparse, a property that can be inherited
from the system matrices X and B leading to a complexity ofO(#nz), i.e. linear in the number of
nonzero elements in the matrix. Other exploitable structure exists if X, B are members of special
families of matrices such as Fourier matrices, finite derivative matrices or wavelet transform
matrices having complexities O(n · ln n), O(n) and O(n), respectively.

Approximate mean computation with conjugate gradients

Computation of the mean m can alternatively be accomplished by the linear conjugate gradient
algorithm (LCG) [Hestenes and Stiefel, 1952, Golub and van Loan, 1996, § 10.2]. Gaussian
belief propagation (GBP) has been recognised as an instance of LCG. Derived as a sequential
minimisation scheme of f (m) = ‖Am− b‖2

2, where in each iteration, one MVM with A is
needed to compute the next descent direction. Often, LCG needs far less than n iterations to
converge, making it the method of choice for large matrices A with exploitable structure. The
final computational cost is O(k · v), where k is the number of MVMs needed and v is the cost
of a single MVM with O(v) ≥ O(n).



16 CHAPTER 2. INFERENCE AND DESIGN IN LINEAR MODELS

Approximate variance computation with Lanczos

A much more difficult endeavour is the computation of the posterior covariance matrix V,
where sometimes only the diagonal dg(V) is of interest. In principle, the computation of V
requires a matrix inversion, which is an O(n3) process in general. We can compute rows vi (or
equivalently columns) of V by solving a linear system

vi = Vei = σ2A−1ei ⇔ Avi = σ2ei

leading to a prohibitive computational cost of O(k · v · n) ≥ O(k · n2) to compute all of V. An
approximate method [Schneider and Willsky, 2001] is based on the Lanczos algorithm [Lanc-
zos, 1950, Golub and van Loan, 1996, § 9]. Used to compute eigenvector/eigenvalue pairs of
large matrices, the Lanczos algorithm is a sequential procedure, requiring one MVM per itera-
tion. The result of the Lanczos algorithm (after k iterations) is an orthogonal matrix Qk ∈ Rn×k

(i.e. Q>k Qk = I ∈ Rk×k) tridiagonalising A so that Q>k AQk = Tk with tridiagonal Tk ∈ Rk×k

whose eigenvector/eigenvalue pairs approach eigenvector/eigenvalue pairs of A. From the
Lanczos algorithm, we finally get an increasingly accurate low-rank approximation to A and V
by

A ≈ QkTkQ>k , and hence V ≈ σ2QkT−1
k Q>k where A � QkTkQ>k � Qk−1Tk−1Q>k−1 � 0.

An undesirable feature of the Lanczos algorithm is the large storage requirements for the matrix
Qk; we have to keep it in memory since every converged eigenvector induces a loss of orthogo-
nality in Qk, which can be corrected by a Gram-Schmidt reorthogonalisation step necessitating
access to the entire matrix Qk. The overall computational complexity isO(k · v + k3 · n) and the
required storage amounts to O(k · n).

Even though we have discussed approximate computations for the linear Gaussian model,
we will use them as building blocks inside approximate inference computations in non-Gaussian
models (chapter 3.5.4).

2.5.5 Variational framework for non-Gaussian models

At the very core of Bayesian inference is the problem of computing high-dimensional integrals.
Most often, these computations are only feasible for special distributions such as factorial or
Gaussian distributions. Therefore, the most successful approach to approximate Bayesian in-
ference in large continuous models is variational calculus [e.g. Jordan et al., 1999]. Optimisation
problems (especially convex ones) are routinely solved at very large scales in numerical math-
ematics and machine learning, which lead to a variety of efficient algorithms. Exploiting that
experience, a variational algorithm solves an (approximately) equivalent optimisation problem
instead of the original problem.

How can we phrase the computation of posterior moments as an optimisation problem?
Starting from a parametric family of distributions Qς(u), where the moment computations are
simple, we can pick the parameter

ς? = arg min
ς

D(P||Qς)

so that Qς?(u) captures the most relevant properties of the posterior P(u|D) via an optimisation
w.r.t. ς. All algorithms discussed in the sequel (and many more) are instances of the divergence
measure and message passing framework by Minka [2005], where global similarity or closeness
between P(u|D) and its approximation Qς(u) is measured by the α-divergence

Dα(P||Qς) :=
1

α− α2

(
1−

∫ [
P(u|D)
Qς(u)

]α

Qς(u)du
)

.

The α-divergence is non-negative, definite and convex in its arguments P and Qς. Two limiting
cases for α = 0, 1

lim
α→1

Dα(P||Qς) = KL(P||Qς), lim
α→0

Dα(P||Qς) = KL(Qς||P)
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are especially important since they correspond to the Kullback-Leibler (KL) divergence

KL(Qς||P) :=
∫

Qς(u) ln
Qς(u)

P(u|D)du = −H [Qς]−
∫

Qς(u) ln P(u|D)du. (2.9)

The KL-divergence is not symmetric; therefore swapping the arguments changes the objective.
Whereas, KL(P||Qς) is minimised by the Gaussian approximation Qς having the same mo-
ments as P, the minimisation of KL(Qς||P) is qualitatively different. Since the average is w.r.t.
Qς instead of P, (see equation 2.9), the approximation can “choose” where it “wants to be”
most accurate. However, if P(u) = 0, the KL-divergence is infinite unless Qς(u) = 0 as well.
This, so called zero forcing property, enforces that Qς and P agree in their respective support.
One consequence of zero forcing is mode seeking meaning that a unimodal approximation to P

has the tendency to approximate the mass around the mode.
In the next sections, we will discuss several approximate inference algorithms applied to the

generalised linear model, each corresponding to a particular choice of α and Qθ as summarised
in table 2.3. All considered algorithms are deterministic approximations in contrast to Markov
Chain Monte Carlo (MCMC) and other sampling approaches.

Name Short α Qς Criterion Other name or equivalent algorithm
Laplace’s method LA 0 δ(u− û) local Taylor expansion around the mode
Factorial variational approximation FV 0 ∏i Qςi(ui) global Mean field approximation
Gaussian KL minimisation KL 0 N (u|m, V) global Structured mean field, Jensen bounding
Individual variational potential bounding VB 0 N (u|m, V) global Constrained KL or integrand bounding
Expectation propagation EP 1 N (u|m, V) both ADATAP or EC

Table 2.3: Properties of approximate inference algorithms

All methods have their respective way of computing an approximation or bound to the
marginal likelihood P(D) with the following relations

ln ZEP ≈ ln Z ≈ ln ZLA, ln Z ≥ ln ZFV , ln Z ≥ ln ZKL ≥ ln ZVB

between them. In addition to that, for models agreeing in their marginals, the EC marginal
likelihood dominates the variational bound [Opper and Winther, 2005, 3.1]

ln ZEP ≥ max(ln ZFV , ln ZKL).

We will see that VB is a special case of KL with lots of desirable properties. Except for the
FV method, all approaches yield a Gaussian approximation to the posterior P(u|D). All al-
gorithms except for LA are focusing on global properties of the posterior; LA looks at the local
height and curvature of P(u|D) only. EP is doing both. Furthermore, KL can be understood as
an average version of LA.

In chapter 3, we analyse the VB objective in detail and derive a scalable algorithm for its
minimisation. In chapter 4, we empirically reformulate all approximation schemes for the case
of Gaussian process classification as outlined in section 2.4. Later, in chapter 5, we use EP
to drive experimental design to optimise image measurement architectures for small images.
Finally, in chapter 6, we use the scalable VB algorithm of chapter 3 to optimise the measurement
architecture for magnetic resonance imaging for medical images of realistic sizes.

Properties of the posterior

Depending on the potentials used, the posterior

P(u|D) = CNCT
Z
N (y|Xu, σ2I)

q

∏
j=1
Tj(b>j u) (2.10)
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will have different qualitative properties. The two most interesting properties for our investi-
gations are log-concavity and super-Gaussianity.

A potential is log-concave if g(s) = ln T (s) is a concave function or equivalently −g(s) is a
convex function.

f (s) is convex if f (λs + (1− λ)t) ≤ λ f (s) + (1− λ) f (t) ∀λ ∈ [0, 1]∀s, t ∈ R, s 6= t.

In other words, there is a slope α and an offset β so that

g(s) ≤ αs + β, ∀s

meaning we can find a linear upper bound on the log potential. A direct consequence of log-
concave potentials is a unimodal posterior P(u|D) rendering MAP estimation a convex min-
imisation problem. All potentials in figure 2.2 except for Student’s t are log-concave.

A potential T (s) is strongly super-Gaussian if g(x) = ln T (s), x = s2 is strictly convex and
non-increasing for x > 0 [Palmer et al., 2006]. As a consequence, T (s) can be lower-bounded
by a centred Gaussian for any given variance γ up to a log-linear term ebs

∃b ∈ R∀γ ∈ R+∀s ∈ R : ln T (s) + bs
c
≥ lnN (s|0, γ).

Intuitively, the logarithm of strongly super-Gaussian functions can be lower bounded by a
quadratic function. All potentials in figure 2.2 except for the Gaussian and the cumulative
Gaussian are strongly super-Gaussian. The two exceptions have quadratic asymptotics caus-
ing the lower bounds to exist only up to a certain variance given by the asymptotics. However
all potentials of figure 2.2 are super-Gaussian meaning that their tails are at least as heavy as
a Gaussian tail. There are also non-super-Gaussian, i.e. sub-Gaussian potentials, e.g. potentials
with bounded support are sub-Gaussian. In statistics, super-Gaussian is equivalent to leptokur-
tic, i.e. having a positive kurtosis.

If a potential T (s) is super-Gaussian and log-concave (all except Student’s t), we can in-
formally say that the logarithm of the potential T (s) is somewhere in between a linear and a
quadratic function and equivalently that the potential T (s) is between the Gaussian and the
Laplace distribution.

Marginal likelihood bound and KL-divergence

The marginal likelihood Z can be lower bounded using Jensen’s inequality

ln Z = ln CNCT + ln
∫

Q(u)
N (y|Xu, σ2I)∏

q
j=1 Tj(sj)

Q(u)
du (2.11)

= ln CNCT + max
Q(u)

∫
Q(u) ln

N (y|Xu, σ2I)∏
q
j=1 Tj(sj)

Q(u)
du

Jensen
≥ ln CNCT +

∫
Q(u) ln

N (y|Xu, σ2I)∏
q
j=1 Tj(sj)

Q(u)
du := ln ZB.

We can recognise the term ln ZB also in the KL-divergence

KL(Q||P) = ln CNCT +
∫

Q(u) ln
N (y|Xu, σ2I)∏

q
j=1 Tj(sj)

Q(u)
du− ln Z

= ln ZB − ln Z (2.12)

and conclude that they are intimately connected. In variational approximations, one can equiv-
alently minimise KL(Qς||P) with respect to variational parameters or maximise a correspond-
ing lower bound on the marginal likelihood ln ZB(ς).



2.5. APPROXIMATE BAYESIAN INFERENCE 19

2.5.6 Laplace’s method

The computationally simplest approach to approximate inference consists of a second order
Taylor expansion of ln P(u|D) at its maximum û, which corresponds to a Gaussian approxima-
tion at the mode and where ∂ ln P(û|D)

∂u = 0. Formally, we have

û = arg max
u

P(u|D) = arg min
u

1
2σ2 ‖Xu− y‖2 −

q

∑
j=1

ln Tj(sj), s = Bu

ln P(u|D) c≈ −1
2
(u− û)>V−1(u− û), V−1 = −∂2 ln P(û|D)

∂u∂u>
= σ−2

(
X>X + B>Γ−1B

)
,

where γ−1
j σ2 = d

dsj
ln Tj(sj). This immediately suggests the IRLS algorithm of section 2.3.1 to

solve the MAP problem. Of course, the method is most sensible for unimodal posteriors. Also,
the covariance only depends on the curvature of the log posterior at the mode making it an
approximation that is only locally justified. The optimisation of ln P(u|D) is a convex program
if all potentials are log-concave.

The algorithm can alternatively be interpreted from a variational perspective using the KL-
divergence and the set of delta distributions centred at û as approximating family e.g. Qû(u) =
δ(u− û) = limε→0N (u|û, εI). Minimisation of the KL-divergence

KL(Qû||P) = −H
[

lim
ε→0
N (u|û, εI)

]
−
∫

δ(u− û) ln P(u|D)du

= −H [δ(u)]− ln P(û|D)

can be understood as the maximisation of the posterior because the differential entropy of
the delta distribution δ(u) does not depend on the variational parameter û. However, the
differential entropyH [δ(u)] approaches−∞ as ε goes to zero which renders the KL-divergence
a rather useless measure.

Marginal likelihood

An approximation to the marginal likelihood can be obtained by also considering the posterior
value at the mode P(û|D)

ln Z = ln CNCT + ln
∫
N (y|Xu, σ2I)

q

∏
j=1
Tj(sj)du

≈ ln CNCT +
1
2

ln |V|+ lnN (y|Xû, σ2I) +
q

∑
j=1

ln Tj(b>j û) := ln ZLA

= ln CNCT +
n−m

2
ln σ2 − 1

2
ln |A| − 1

2σ2 ‖Xû− y‖2 +
q

∑
j=1

ln Tj(b>j û),

where A = X>X + B>Γ−1B.

Computational complexity

The minimisation using IRLS or CG is efficient and scales well with the number of potentials
p. Marginal likelihood computations are intrinsically harder since the exact evaluation of the
ln |A| term is cubic in p. However, the Lanczos approach of section 2.5.4 allows computing
bounds.
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2.5.7 Factorial variational approximation

A variational approach very commonly used in physics [Chandler, 1987, Parisi, 1988], is the
mean field approximation, where the posterior P(u|D) is approximated by the closest factorial
distribution ∏n

i=1 Qi(ui) as measured by the KL-divergence. We derive the functional form of
that distribution using variational calculus to find the optimal lower bound on the marginal
likelihood, which is equivalent to minimising the KL-divergence (equation 2.12)

ln Z ≥ ln CNCT +
∫ n

∏
i=1

Q(ui) ln
N (y|Xu, σ2I)∏

q
j=1 Tj(sj)

∏n
i=1 Q(ui)

du, sj = b>j u (2.13)

c
=

n

∑
i=1
H [Qi]−

1
2σ2

∫ n

∏
i=1

Qi(ui)

u X>X︸︷︷︸
D

u−2y>X︸ ︷︷ ︸
c

u

du +
q

∑
j=1

∫ n

∏
i=1

Qi(ui) ln Tj(sj)du

ln ZFV := ln CNCT +
n

∑
i=1
H [Qi]−

m>Dm + v>dg(D) + c>m
2σ2 +

q

∑
j=1

∫ n

∏
i=1

Qi(ui) ln Tj(sj)du

where mi :=
∫

Qi(ui)uidui, vi :=
∫

Qi(ui)(ui −mi)
2dui =

∫
Qi(ui)u2

i dui −m2
i .

Then using

δH [Qi]

δQi
(ui) = − ln Qi(ui)− 1, δmi

δQi
(ui) = ui, and

δvi

δQi
(ui) = (ui −mi)

2,

we can compute the functional derivative and set it to 0 to be able to read off the optimal form

δ ln ZFV

δQi
(ui) = − ln Qi(ui)− 1− dii(ui −mi)

2 +
(
2m>dg(D) + ci

)
ui

2σ2 + ln T̃i(ui)

δ ln ZFV

δQi
(ui) ≡ 0⇒ Qi(ui) = Z̃−1

i N (ui|µ̃i, σ̃2
i )T̃i(ui), (2.14)

where the substitute potential T̃i(ui) = exp
[
∑

q
j=1

∫
ln T (b>j u)∏k 6=i (Qk(uk)duk)

]
is a compli-

cated function of ui. Only for B = I, the expression simplifies considerably into T̃i(ui) = Ti(ui).
Knowing the functional form of the posterior approximation, we can optimise ln ZFV with

respect to the variational parameters (µ̃, Σ̃).

Marginal likelihood

We start from the general expression for ln ZFV of equation 2.13 and plug in the functional form
of Q(ui). It turns out that the formula simplifies a lot for B = I to yield

ln ZFV = ln CNCT + ln
∫

∏
i
T (ui)N (u|µ̃, Σ̃) ln

N (y|Xu, σ2I)
N (u|µ̃, Σ̃)

du

= ln CNCT −
n

∑
i=1

(
ln Z̃−1

i − ln σ̃i

)
−m ln σ +

n−m
2

ln 2π − m>Dm + v>dg(D) + c>m + e
2

with mi :=
∫

Qi(ui)uidui, vi :=
∫

Qi(ui)(ui −mi)
2dui, D := σ−2X>X + Σ̃−1

and c = −2(σ−2X>y + Σ̃−1µ), e = σ−2y>y + µ>Σ̃−1µ.

Computational complexity

The maximisation of ln ZFV using a fixed-point algorithm [Miskin, 2000] is efficient and scales
very well with the number of potentials p. Marginal likelihood computations are cheap, due
to the factorial approximation. The major drawback of the method is the fact that it cannot
properly capture correlations between pairs of variables.
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2.5.8 Gaussian KL minimisation

Here, we simply fit the closest Gaussian distribution Qς(u) = N (u|m, V) in terms of the KL-
divergence KL(Qς||P) to the posterior P(u|D) [Opper and Archambeau, 2009] – a model with
n
2 (n + 3) parameters. Again, we start from Jensen’s lower bound on the marginal likelihood

ln ZKL = ln CNCT +
∫
N (u|m, V) ln

N (y|Xu, σ2I)∏
q
j=1 Tj(sj)

N (u|m, V)
du (2.15)

= C +
1
2

ln |V| − 1
2σ2 tr

(
XVX>

)
− 1

2σ2 ‖Xm− y‖2 +
q

∑
j=1

∫
N (s) ln Tj(σjs + µj)ds

C := ln CNCT +
n
2
(1 + ln 2π)− m

2
ln(2πσ2), µj = b>j m, and σj =

√
b>j Vbj.

By equating the derivative

∂ ln ZKL

∂V
=

1
2

V−1 − 1
2σ2 X>X + B>

[∫ ∂N (s|µj, σ2
j )

∂σ2
j

ln Tj(s)ds

]
jj

B !
= 0

⇔ V−1 =
1
σ2 (X

>X + B>Γ−1B), γj = −
1
σ2

∫ ∂N (s|µj, σ2
j )

∂σ2
j

ln Tj(s)ds

with zero, we find that the covariance at the optimum is of the form

V? = σ2A−1, A = X>X + B>Γ−1B (2.16)

implying that V has only q parameters γj [Seeger, 2003] instead of n
2 (n + 1) parameters Vij. As

a consequence, we can – without loss of generality – use Gaussian potential approximations
T̃j(sj) = exp

(
β j

σ2 sj − 1
2σ2γj

s2
j

)
∝ N

(
sj|β jγj, σ2γj

)
with ς = (β, γ); the optimum is the same as if

using a full Gaussian with ς = (m, V). In fact, we compute the equivalent or effective Gaussian
potential for every non-Gaussian potential. That means, we will use the approximate posterior

Qς(u) =
1
Z̃
N (y|Xu, σ2I)

q

∏
j=1
T̃j(sj), Z̃ =

∫
N (y|Xu, σ2I)

q

∏
j=1
T̃j(sj)du (2.17)

instead of Qς(u) = N (u|m, V). Opper and Archambeau [2009] show that the fixed point
conditions at the mode û for Laplace’s method

∂ ln P(û|D)
∂u

= 0 and V−1 = −∂2 ln P(û|D)
∂u∂u>

hold on average for the KL methods since

EN (u|m,V)

[
∂ ln P(û|D)

∂u

]
= 0 and V−1 = EN (u|m,V)

[
−∂2 ln P(û|D)

∂u∂u>

]
.

Intuitively, the marginal likelihood bound of equation 2.15 seen as a function of the mean m
at the optimum V? is a smoothed version (with smoothing width σ?

j ) of the MAP objective of
section 2.5.6.

ln ZKL(m)
c
= − 1

2σ2 ‖Xm− y‖2 +
q

∑
j=1

∫
N
(

s|b>j m, (σ?
j )

2
)

ln Tj(s)ds

= − 1
2σ2 ‖Xm− y‖2 +

q

∑
j=1

∫
N (s|0, 1) ln Tj

(
σ?

j s + b>j m
)

ds

ln P(u|D) c
= − 1

2σ2 ‖Xu− y‖2 +
q

∑
j=1

ln Tj(b>j u)
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Most notably, if − ln P(u|D) is convex (e.g. all potentials are log-concave) then − ln ZKL(m) is
also convex since weighted sums preserve convexity [Boyd and Vandenberghe, 2004, §3.2.1].
However, − ln ZKL(γ) is not convex in general since

− ln ZKL(V)
c
= −1

2
ln |V|+ 1

2σ2 tr
(

XVX>
)
+

q

∑
j=1

ωj(µj, σ2
j ), σ2

j = b>j Vbj, µj = m>bj

is in general not convex in V = σ2(X>X + B>Γ−1B)−1 let alone in Γ. In appendix C.8, we
show that – even though ωj(µj, σ2

j ) = −
∫
N (s) ln Tj

(
σjs + µj

)
ds is in general jointly convex

in (µj, σj) – it is at least not convex in σ2
j for Laplace potentials.

Marginal likelihood

Plugging the (β, γ) parametrisation into the lower bound, we obtain the alternative expression

ln ZKL = ln CNCT + ln Z̃ +
q

∑
j=1

∫
Qς(u) ln

Tj(sj)

T̃j(sj)
du (2.18)

ln Z̃ =
∫
N (y|Xu, σ2I)

q

∏
j=1
T̃j(sj)du =

n−m
2

ln(2πσ2) +
m>Am− y>y

2σ2 − 1
2

ln |A|

=
n−m

2
ln(2πσ2)− 1

2σ2 min
u

(
‖Xu− y‖2 + s>Γ−1s− 2β>s

)
− 1

2
ln |A|,

where we used the shorthands A = X>X + B>Γ−1B, d = X>y + B>β and m = A−1d. The step
in the last line is based on the relationship −c>A−1c = minx x>Ax− 2c>x (see appendix B); we
use it only because it will appear in chapter 3. Approximate inference is done by maximising
ln ZKL with respect to the variational parameters ς = (β, γ).

Computational complexity

The maximisation of ln ZKL using a quasi Newton [Opper and Archambeau, 2009] or Newton
algorithm [Nickisch and Rasmussen, 2008] and the marginal likelihood evaluation do not scale
well with the number of potentials p due to cubic matrix operations. Using the Lanczos proce-
dure from section 2.5.4, we can indeed approximately compute gradients of ln ZKL. However,
there is no cheap way to select the step size (since ln ZKL is hard to evaluate), which is crucial
for gradient-based methods to properly converge.

2.5.9 Individual variational potential bounding

A closely related algorithm is based on the idea to individually lower bound every non-Gaussian
potential Tj(sj) by a scaled parametrised Gaussian and to maximise the marginal likelihood
with respect to these parameters [Jaakkola and Jordan, 1996, Gibbs and MacKay, 2000, Palmer
et al., 2006]. We call the method VB to emphasise the variational lower bounds. Formally, one
uses a lower bound

Tj(sj) ≥ exp
(

β j(γj)

σ2 sj −
1

2σ2γj
s2

j −
hj(γj)

2

)
= T̂j(sj; γj) ∝ N

(
sj|β jγj, σ2γj

)
(2.19)

with width parameter γj to derive a lower evidence bound

ln Z = ln CNCT + ln
∫
N (y|Xu, σ2I)

q

∏
j=1
Tj(sj)du

= ln CNCT + ln
∫
N (y|Xu, σ2I)max

γ

q

∏
j=1
T̂j(sj; γj)du

≥ ln CNCT + ln
∫
N (y|Xu, σ2I)

q

∏
j=1
T̂j(sj; γj)du =: ln ZVB(γ).
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The relation to the KL method of section 2.5.8 is interesting: the individual potential bounding
approach is a special case of the KL algorithm, where the parameter β becomes a function of
γ and the lower bound ln ZVB(γ) is a relaxation of ln ZKL. Comparing the Gaussian potential
approximation of the KL method T̃j(sj), T̃ (s) = ∏

q
j=1 T̃j(sj) and the lower bound used in the

VB method T̂j(sj; γj), we find

Z̃ =
∫
N (y|Xu, σ2I)T̃ (s)du, T̂j(sj; γj) = T̃j(sj; γj) exp

(
−hj(γj)

2

)
⇔ ln

T̂j(sj; γj)

T̃j(sj; γj)
= −hj(γj)

2

a relation that can be used to further lower bound ln ZKL by

ln Z ≥ max
β,γ

ln ZKL(β, γ) = max
β,γ

(
ln Z̃CNCT +

q

∑
j=1

∫
Qς(u) ln

Tj(sj)

T̃j(sj)
du

)
β=β(γ)

≥ max
γ

(
ln Z̃CNCT +

q

∑
j=1

∫
Qς(u) ln

T̂j(sj; γj)

T̃j(sj)
du

)

= max
γ

(
ln Z̃CNCT −

1
2

q

∑
j=1

hj(γj)

)
= max

γ
ln ZVB(γ). (2.20)

From the definition of ln Z̃ in equation 2.17 and the bound of equation 2.19, we can see that the
last line, indeed equals ln ZVB.

We will see in chapter 3, that ln ZVB(γ) has very advantageous analytical and algorithmic
properties leading to scalable and efficient algorithms. We will show that − ln ZVB(γ) is a con-
vex function if all potentials of the model are log-concave and super-Gaussian – a property that
will theoretically corroborate the algorithm and practically simplify the variational optimisa-
tion.

Computational complexity

As we will discuss in chapter 3, ln ZVB can be decoupled so that an efficient optimisation be-
comes possible. Furthermore, for super-Gaussian and log-concave potentials T (sj), this leads
to a convex minimisation problem.

2.5.10 Expectation propagation

The expectation propagation algorithm [Minka, 2001a] generalises loopy belief propagation
(LBP)[Frey and MacKay, 1998, Murphy et al., 1999] from the machine learning literature and
assumed density filtering (ADF) [Maybeck, 1982] from the control literature and is equivalent
to approaches from statistical physics such as adaptive TAP (ADATAP) [Opper and Winther,
2000] and the expectation consistency (EC) framework by Opper and Winther [2005].

EP attempts to globally minimise the KL-divergence (with average computed w.r.t. P(u|D))

KL (P‖Q) =
∫

P(u|D) ln
P(u|D)

Q(u)
du

between the exact posterior P(u|D) = CNCT N (y|Xu, σ2I)∏
q
j=1 Tj(sj) and the Gaussian

Q(u) = CNCT N (y|Xu, σ2I)
q

∏
j=1
T̃j(sj), T̃j(sj) = Z−1

j exp
(

β j

σ2 sj −
1

2σ2γj
s2

j

)
∝ N

(
sj|β jγj, σ2γj

)
,

where all potentials Tj(sj) have been replaced by scaled Gaussians T̃j(sj) acting as the Gaus-
sian equivalents of Tj(sj). Since the global integration in KL (P||Q) over all q non-Gaussian
potentials jointly is analytically intractable, the minimisation is relaxed to considering one non-
Gaussian potential at a time and hence to 1d integrations over sj
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KL

(
Q(u)

Tj(sj)

T̃j(sj)

∥∥∥∥∥Q(u)

)
= KL

(
Qj(sj)

Tj(sj)

T̃j(sj)

∥∥∥∥∥Qj(sj)

)
= KL

(
Q¬j · Tj

∥∥Q¬j · T̃j
)

(2.21)

using Gaussian marginals Q(sj) = N (sj|b>j m, b>j Vbj) of the approximation Q(u) = N (u|m, V)

to the exact posterior. Here, the (unnormalised) cavity distributions Q¬j(sj) := Qj(sj)/T̃j(sj)
summarise the contextual information about sj contained in the approximate posterior if the
approximate potential T̃j(sj) is removed. The local KL-divergence in equation 2.21 is min-
imised if the variational parameters (Zj, β j, γj) of T̃j(sj) are chosen so that Q¬j(sj)Tj(sj) and
Q¬j(sj)T̃j(sj) have the same moments∫

sk
j Q¬j(sj)T̃j(sj)dsj =

∫
sk

j Q¬j(sj)Tj(sj)dsj, k = 0, 1, 2. (2.22)

Algorithmically, these local moment matching steps are iterated over j = 1, .., q until conver-
gence. The fixed point of the EP algorithm is a saddle point of the EP marginal likelihood
[Minka, 2005] of equation 2.23 or equivalently the EC free energy [Opper and Winther, 2005].
Note that by using the KL-divergence the “other way round” KL

(
Q¬j · T̃j

∥∥Q¬j · Tj
)
, we obtain

a local updating scheme (variational message passing [Winn and Bishop, 2005]) minimising the
global objective [Minka, 2005] of the KL method of section 2.5.8.

To summarise, EP can be understood in three ways: first, EP is an algorithm iterating local
updates based on moment matching. Second, it is a fixed point of a free energy function and
third, it is a system of nonlinear equations (equation 2.22).

Marginal likelihood

Replacing the potentials Tj(sj) by their equivalent Gaussians T̃j(sj) in equation 2.11 and using
the definition for Z̃ in equation 2.17, we obtain the EP marginal likelihood

ln ZEp = ln CNCT + ln
∫
N (y|Xu, σ2I)

q

∏
j=1
T̃j(sj)du = ln CNCT + ln Z̃−

q

∑
j=1

ln Zj (2.23)

that shares the term ln CNCT + ln Z̃ with ln ZKL (equation 2.18) and ln ZVB (equation 2.20).
Note that ln ZEP ≥ ln ZKL ≥ ln ZVB and ln ZEP ≥ ln ZFV if the algorithms yield the same
marginals [Opper and Winther, 2005, 3.1].

Computational complexity

Every EP update step requires access to the posterior marginals Qj(sj). To compute one marginal
exactly, one has to solve a linear system of size n (section 2.5.4). So, every sweep through all
q potentials is at least of quadratic complexity O(q · n), which is prohibitive. The problem is
the sequential updating one-by-one in contrast to a gradient step updating all potentials jointly.
For Gaussian process models (section 4.4), linear systems requireO(n3) in general, therefore EP
implementations keep a representation of the posterior covariance of size O(n2) either by stor-
ing V or equivalently some Cholesky factor of the same size [Rasmussen and Williams, 2006,
ch. 3.6.3] in order to guarantee O(1) access to the marginals. Furthermore, EP requires numer-
ically exact calculations to properly converge [Seeger, 2008, p. 773] rendering approximations
less attractive.

2.6 Experimental design

Experimental design allows to guide the measurement process itself in order to acquire only
the most informative data points (xi, yi). Often, the data matrix X containing the covariates is
simply called the design matrix.
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The frequentist or classical experimental design methodology as introduced by Fisher [1935]
tries to decrease the variance of the estimator û for the unknown variables u. As a result, the de-
sign criteria are based on the eigenvalues of the estimator’s covariance matrix or lower bounds
thereof. Modern books on the subject include Atkinson and Donev [2002], Pukelsheim [2006].

The Bayesian approach is different since the unknown u is treated as a random variable
with a prior P(u). Here, the goal is to reduce the entropy in the posterior P(u|y). For a seminal
review of Bayesian experimental design, see Chaloner and Verdinelli [1995].

As we will see, for the Gaussian linear model, Bayesian experimental design is equivalent
to D-optimal frequentist design. However, for more complex models, the two approaches are
very different. One distinction is that the Bayesian design score depends on the measurements
y made so far, whereas only expectations w.r.t. the likelihood P(y|u) appear in the frequentist
score.

2.6.1 Frequentist experimental design

The basic frequentist idea is to select new data (x∗, y∗) so that the variance V = V [û] of the
estimator û = û(X, y) for the unknown u decreases as much as possible, where the particular
choice of estimator determines the compromise between bias and variance. Most of the classical
design criteria are p-norms of the vector λ

φ(û) = ‖λ‖p =

(
n

∑
i=1

λ
p
i

) 1
p

, λi = λi(V)

whose components are the eigenvalues of V – a way to express the “size” of the matrix V as a
scalar. Table 2.4 summarises the most common cost functions used in experimental design.

name of the design criterion p cost function φ(û) intuition
D-optimality 0 ∏n

i=1 λi = |V| generalised variance
A-optimality 1 ∑n

i=1 λi = tr(V) average variance
E-optimality ∞ maxi λi = ‖V‖∞ maximal variance

Table 2.4: Experimental design cost functions

For the simple OLS estimator, we can analytically compute the variance, but for non-Gaussian
likelihoods or more complicated estimators, it can be impossible to explicitly derive the vari-
ance. Using the likelihood P(y|u), a distribution over y for fixed u, the Cramér-Rao lower
bound (CRB) [Cramér, 1946, Rao, 1945] on the variance of any estimator û has the form

V = V [û] <
∂ψ

∂u>
F−1 ∂ψ>

∂u
, ψ =

∫
ûP(y|u)dy, F =

∫
∂ ln P(y|u)

∂u
∂ ln P(y|u)

∂u>
P(y|u)dy,

(2.24)
where F is the Fisher information matrix and ψ = E [û] is the expected value of the estimator
under the likelihood. The bound is asymptotically tight for the maximum likelihood estimator.
Often, unbiased estimators are used, where E [û] = ψ = u and hence V [û] < F−1. Since V
does not have a closed form for many interesting models, one replaces V by its lower bound
according to equation 2.24. For general likelihoods P(y|u), also the expectation in the Fisher
matrix is likely to be analytically intractable. Besides the CRB, there exists a big variety of lower
bounds on V [û] [Bhattacharyya, 1946, Barankin, 1949, Abel, 1993] being sometimes tighter but
more tedious to compute. For non-linear Gaussian models, the estimator’s expectation E [û]
is hard to compute. Further, for Gaussian likelihood P(y|u) = N (y|Xu, σ2I), the Fisher in-
formation matrix is given by F = 1

σ2 X>X, which is rank deficient if m < n. This property
renders the approach inapplicable in underdetermined settings. In PLS (section 2.2.1), for ex-
ample, depending on γ−1, ψ ranges between Eγ=0 [û] = 0 � E [û] � u = Eγ=∞ [û] giving
rise to different values of the bias E [û]− u. There is one critical issue concerning the design
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methodology: we minimise a lower bound on the variance, however theoretical guarantees for
the validity of this procedure apply only to the asymptotic regime of many observations. The
small sample regime is less well understood.

Note that the criteria φD,A,E(û) do not depend on the actual measurements y made so far;
they are expectations w.r.t. y under the likelihood.

2.6.2 Bayesian experimental design

In Bayesian design philosophy, the unknown u is considered a random variable. A natural
measure of uncertainty contained in a random variable z is its (differential) entropy [Cover and
Thomas, 2006]

H [P(z)] = −
∫

P(z) ln P(z)dz.

For fixed mean and variance, a Gaussian has maximal entropy (appendix C) leading to the
upper bound

H [P(z)] ≤ H
[
N
(

z|EP(z)[z], VP(z)[z]
)]

=
1
2

ln
∣∣∣VP(z)[z]

∣∣∣+ n
2
(1 + ln 2π) , z ∈ Rn. (2.25)

More accurate statements about the tightness of the bound are based on series approximations
of P(z) as given in appendix D.4. Therefore, large variances are equivalent to high entropy
implying very little information about the location of z. At the core of the Bayesian design
strategy is the idea to localise the posterior as much as possible. This is equivalent to decreasing
the expected entropy of the posterior including the new data x∗ relative to the entropy of the
previous posterior without x∗. Formally, we use the information gain

IG(x∗) = H[P(u|y)]−
∫
H[P(u|y, y∗)]P(y∗|y)dy∗, (2.26)

where we need to compute the expected entropy H[P(u|y, y∗)] of the augmented posterior in-
cluding the measurement y∗ along x∗. The expectation is done over P(y∗|y) =

∫
P(u|y)P(y∗|u)du.

Note that the information gain explicitly depends on the observations y. In the applications of
this thesis (see chapters 5&6), the integrals in equation 2.26 cannot be done analytically. There-
fore, we will use approximate inference to replace P(u|y) by Q(u) first with an approximation
allowing an analytic computation of the information gain score. However, it is necessary to
keep in mind that we approximate at various stages to obtain the design score: first, variational
methods (except for EP) typically underestimate the posterior covariance and second the Gaus-
sian entropy is an upper bound on the actual posterior entropy. As in case of frequentist design
(section 2.6.1), theoretical results on the approximation quality are rare.

2.6.3 Information gain scores and approximate posteriors

For general posteriors P(u|y) the information gain score IG(X∗) is analytically intractable.
However, for Gaussian likelihoods P(y∗|u) = N (y∗|X∗u, σ2I), we can use a Gaussian Q(u)
to compute the information gain score IG(X∗) approximately. For non-Gaussian likelihoods,
further approximations are necessary. With P(u|y, y∗)P(y∗|y) = P(y∗|y, u)P(u|y) and X∗ ∈
Rd×n, y∗ ∈ Rd, the score IG(X∗) can be expressed as the entropy of the new observations y∗
given the old observations y:

IG(X∗) = H [P(u|y)]−
∫
H [P(u|y, y∗)]P(y∗|y)dy∗

= H [P(u|y)] +
∫ ∫

ln
(

P(y∗|y, u)P(u|y)
P(y∗|y)

)
P(u|y, y∗)duP(y∗|y)dy∗

= H [P(u|y)] +
∫ ∫

ln P(y∗|y, u)P(u|y, y∗)P(y∗|y)dy∗du−H [P(u|y)] +H [P(y∗|y)]

= H [P(y∗|y)]−
∫
H [P(y∗|u)]P(u|y)du = H [P(y∗|y)]− d

(
1
2

ln 2πe + ln σ

)
.
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Even though, P(y∗|y) is a non-Gaussian distribution, its variance can be obtained by the law
of total variance from the variance of the posterior P(u|y)

VP(y∗|y) [y∗|y] = EP(u|y)
[
VP(y∗|y,u) [y∗|y, u]

]
+ VP(u|y)

[
EP(y∗|y,u) [y∗|y, u]

]
= EP(u|y)

[
σ2I
]
+ VP(u|y) [X∗u]

= σ2I + X∗VP(u|y) [u]X>∗ .

Using the Gaussian upper bound on the entropy (equation 2.25), we get a formula generalising
the linear Gaussian case (equations 2.27 and 2.28) to

IG(X∗) ≤
1
2

ln
∣∣∣VP(y∗|y) [y∗]

∣∣∣+ d
2
(ln 2πe)− d

(
1
2

ln 2πe + ln σ

)
=

1
2

ln
∣∣∣I + σ−2X∗VP(u|y) [u]X>∗

∣∣∣ .

Since we seek for X∗ with maximal information gain IG(X∗), the bound depends on the dom-
inating eigenmodes of the posterior covariance matrix VP(u|y) [u]. In applications where n is

large and the approximate posterior covariance V = VQ(u) [u] = σ2 (X>X + B>Γ−1B
)−1 can-

not be stored as a dense matrix but is implicitly represented using MVMs with X, B and the
vector γ, the evaluation of X∗VX>∗ is computationally demanding. Every row of X∗ requires
the solution of a linear system with the n × n matrix V, which can – of course – be done by
conjugate gradients . To alleviate this computational burden, one can use the Lanczos method
of section 2.5.4 computing a low-rank approximation V ≈ σ2QkT−1

k Q>k . If the eigenmodes of
V are well captured by the Lanczos approximation, we can expect the large score values to be
rather accurate.

2.6.4 Constrained designs

Up to now, we require new measurement directions to have unit length dg(X∗X>∗ ) = 1 other-
wise, rescaling would always lead to an increase in information gain or equivalently a decrease
in the estimator’s variance. Further constraints might be present in practise. Most commonly,
the rows of X∗ can originate from a discrete set of candidates Xc. In the so-called transductive
setting [Yu et al., 2006], one has to find a discrete subset of the possible candidates rather than a
continuous matrix. In general, the selection problem is of combinatorial complexity, however,
there exist convex reformulations for the linear Gaussian case [Yu et al., 2008]. Unfortunately,
they are useless in the underdetermined regime where m < n.

2.6.5 Sequential and joint designs

In the applications of this thesis, experimental design is not only used once. For complex design
decisions based on data (y, X), we alternate in a loop between the inference step and the design
decision for the next single (y∗, x∗) or joint measurement (y∗, X∗) to include. Clearly, optimising
a set of candidates X∗ jointly can lead to better designs but is also computationally more de-
manding. Often, a greedy strategy will act as the pragmatic choice with only a single candidate
x∗ being added each time. The individual candidate measurements x∗ can come from a discrete
candidate set xi

∗, i ∈ I or from a continuous candidate space x∗ ∈ X . In the former case, we
simply select the candidate with highest score, and in the latter case, we have to optimise the
design score w.r.t. x∗ with gradient based methods, for example.

It is the inference step, that marks the difference between the frequentist and the Bayesian
approach. In Frequentist design, we need to compute the inverse Fisher information matrix
F−1

x∗ for every candidate x∗ and select the candidate with smallest cost φ. In Bayesian design,
we compute an approximate posterior (basically a Gaussian) Q(u) ≈ P(u|y, X) specifically
tailored to facilitate the evaluation of the information gain score IG(x∗) and pick the candidate
x∗ yielding the biggest score.
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On a higher level, the actual observations y and y∗ do not enter the frequentist design loop
as particular values; they are present through expectations only. In Bayesian methodology
however, precisely these numbers form the basis for a proper assessment of the uncertainty left
in the current state of knowledge about u. In the regime of abundant data, m � 0, frequentist
design is the method of choice since it implies a lot of asymptotic guarantees. However, in the
underdetermined case m < n, the Bayesian approach is more appropriate as we will see in the
following.

2.6.6 Bayesian versus frequentist design

D-optimal frequentist design and Bayesian experimental design based on a Gaussian approxi-
mation to the posterior distribution are similar in two ways: first, they both reduce uncertainty,
i.e. either shrink the variance of the estimator or lower the posterior entropy, which is equiv-
alent to decreasing the variance in a Gaussian approximation. Second, in the limit of many
observations m → ∞ and hence omission of the prior, they are the same. However, there are
also severe differences: in the underdetermined case m < n, the frequentist approach is not
applicable.

To make this more concrete, we have a look at the linear Gaussian case as detailed in section
2.2.1 and. For p = 2, the PLS estimator (equation 2.7) is given by ûPLS = A−1X>y with A =
X>X+ γ−1B>B. Using the bilinearity of the covariance and V[y] = σ2I, we obtain the variance
of the PLS estimator ûPLS

V̂ := V[ûPLS] = A−1X>V[y]XA−1 = σ2A−1X>XA−1.

Although, the PLS estimator coincides with the posterior mean, the posterior variance

V := VP(u|D)[u] = σ2A−1

is distinctively different from V̂. As it will be shown in chapter 3, the diagonal ν = dg(V)
is bounded ν � σ2γ1 from above by the prior variance, which does not hold for V̂. Also
the rank of V̂ only depends on the rank of X>X. For underdetermined measurements m <
n, V̂ inevitably becomes singular; it cannot be interpreted as the uncertainty of the current
knowledge about u since it is impossible to achieve perfect certainty from a small number of
noisy measurements.

Experimental design with D-optimality as criterion and invertible X>X, selects the next
measurements X∗ = [x∗,1, .., x∗,d]> to maximise the design score

− ln φD(X∗, ûPLS) = − ln |V̂| = − ln |σ2(A + X∗X>∗ )
−2(X>X + X∗X>∗ )|, A = X>X + Γ−1

c
= 2 ln |A + X∗X>∗ | − ln |X>X + X∗X>∗ |
c
= 2 ln |I + X>∗ A−1X∗| − ln |I + X>∗ (X

>X)−1X∗|. (2.27)

The score compromises between choosing X∗ along the biggest eigendirections of A−1 (Bayesian
posterior variance) and along the smallest eigendirections of (X>X)−1 (OLS estimator vari-
ance).

The Bayesian information gain score

IG(x∗) = −
1
2

ln |A|+ 1
2

ln
∣∣∣X>X + X∗X>∗ + Γ−1

∣∣∣ = 1
2

ln
∣∣∣I + X>∗ A−1X∗

∣∣∣ , A = X>X+ Γ−1 (2.28)

is equivalent to − ln φD(X∗, ûPLS) in the flat prior limit Γ→ ∞ · I only.
We use two toy examples with n = 2, q = m = 1 to illustrate the different behaviours: first

let the measurement X = [0, 1] and the penalty domains B = [1, 0] be orthogonal BX> = 0 ∈
Rq×m, hence

A =

(
γ−1 0

0 1

)
, V̂ = σ2

(
γ2 0
0 0

)
⇒ x̂∗ =

(
1
0

)
and V = σ2

(
γ 0
0 1

)
.
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Thus, for γ < 1, the frequentist and Bayesian methodologies exactly suggest the opposite
measurement; for larger prior variances, the Bayesian will measure u1 as the frequentist. Note
that in a sequential setting, the frequentist will always measure u1 since he is absolutely certain
about u2.

Second, if X = [1, 1], B = [1, 0] we get

A =

(
1 + γ−1 1

1 1

)
, A−1 =

(
γ −γ
−γ γ + 1

)
V̂ = σ2A−1X>XA−1 = σ2

(
0 0
0 1

)
⇒ x̂∗ =

(
0
1

)
V = σ2A−1 = σ2

(
γ −γ
−γ γ + 1

)
.

Decomposing A = WΛW> with λ =
2+γ−1±

√
4+γ−2

2 and w = 1√
λ2−2λ+2

(
λ− 1

1

)
and using

the smaller eigenvalue of A, we can deduce x∗ ∈ [−ξ; 1], where ξ = 1
2

√
γ−2 + 4− 1

2 γ−1 ∈ [0, 1].

2.7 Discussion and links to other chapters

Starting from a theoretical introduction into frequentist estimation and Bayesian inference in
sections 2.1.1&2.1.2, we discussed the simplest possible application: the Gaussian linear model
in section 2.2.

Two generalisations were addressed in terms of their respective estimation and inference
procedures:

• Non-Gaussian noise leads to the generalised linear model (section 2.3). GLMs are used
in the compressed image sensing application in chapter 5 and the magnetic resonance
sequence design in chapter 6.

• Non-linear functional relationships can be achieved by Gaussian process models (section
2.4). Chapter 4 discusses applications of these non-linear model to classification.

In the technical section 2.5.4, we develop approaches to perform approximate Bayesian infer-
ence in a unified framework. After this broad overview, we explain, how the posterior approx-
imation can be used to perform Bayesian experimental design in section 2.6.2. The frequentist
design methodology is detailed in section 2.6.1.

Chapter 3 concentrates on one particular approximation method and sheds light on con-
vexity properties and scalable optimisation algorithms. In chapter 4, we have a closer look at
various aspects of all approximation methods in the context of Gaussian processes. Later, in
chapter 5, we use expectation propagation to design the measurement architecture in an image
acquisition task and finally, in chapter 6, we employ the algorithms of chapter 3 to optimise
magnetic resonance trajectories.





Chapter 3

Convex Inference Relaxations and
Algorithms

Point estimators are most often stated as the unique solution to an optimisation problem. Due
to scalable optimisation algorithms, point estimators can be efficiently computed for models
with very many variables. Approximate Bayesian inference is at its core a high-dimensional
integration problem, which is computationally much harder to solve. Variational approaches,
represent the integration as an optimisation problem to get access to the advanced algorithms
making point estimation so efficient. However, typical variational problems are not only high-
dimensional and strongly coupled; they enjoy much less analytically useful properties such as
convexity.

In the following chapter, which is based on material contained in Nickisch and Seeger [2009]
and Seeger and Nickisch [2008b], we discuss a particular variational inference method [Giro-
lami, 2001, Palmer et al., 2006, Jaakkola, 1997] already mentioned in chapter 2.5.9. We provide
convexity results, a scalable algorithm and experiments. The proposed inference algorithm is
as scalable as the corresponding point estimation procedure that is contained as a special case.

In particular, we compare scale-mixture and variational bounding approaches to varia-
tional inference in sections 3.2 and 3.3, respectively to understand how non-Gaussian potentials
can be represented by Gaussian ones. Then we derive convexity properties of the variational
bounding technique in section 3.4 and provide an efficient optimisation algorithm in section
3.5 as well as a generic implementation in form of the glm-ie toolbox1 (section 3.6). Finally,
section 3.7 presents experimental results for an application to large scale binary classification
active learning followed by a discussion in section 3.8.

3.1 Introduction

The class of models considered in the following comprises generalised linear models over con-
tinuous latent variables u ∈ Rn with GaussianN (ri|yi, σ2) and non-Gaussian potentials Tj(sj),
where r = Xu and s = Bu (see figure 2.1).

For example, in the magnetic resonance imaging application of chapter 6, u denotes the
unknown proton density image, y = Xu + ε ∈ Cn are scanner measurements, where X is a
Fourier sampling matrix, and the Tj(sj) form a sparsity prior on multi scale image gradients sj.

In binary classification (section 3.7), u correspond to classifier weights, B collects feature
vectors bj (or simply data points), and Tj(sj) are cumulative logistic likelihoods. For a Gaussian
prior on the weights u, we have X = I and y = 0. However, a sparsity prior on the weights
u leads to X = [], y = [], i.e. m = 0 Gaussian potentials; we have to append I to B, and add
sparsity potentials to the Tj(sj).

The inference algorithm, we are discussing in this chapter provides a deterministic ap-
proximation to the posterior distribution of the model. Alternatively, sampling from high-

1http://mloss.org/software/view/269/

31

http://mloss.org/software/view/269/


32 CHAPTER 3. CONVEX INFERENCE RELAXATIONS AND ALGORITHMS

dimensional models is extremely challenging even though sophisticated samplers such as hy-
brid Monte Carlo techniques [Duane et al., 1987, Neal, 1993] are used. Proper estimation of
posterior covariance modes, as needed for experimental design, is likely to require many sam-
ples from the posterior distribution. The Laplace approximation at the posterior mode (see
chapter 2.5.6) is not applicable if non-differentiable potentials such as Laplace potentials are
used because at the mode of such a model, the Hessian does not exist.

Our posterior approximation has a proper non-degenerate covariance enabling high-level
tasks that rely on faithful approximations of uncertainty information (unrelated to the loca-
tion of the posterior mode) such as experimental design, hyperparameter learning or feature
relevance ranking. We show that our variational relaxation constitutes a convex optimisation
problem, whenever the search for the posterior mode is convex. We propose an efficient dou-
ble loop algorithm2, reaching scalability by decoupling the criterion and reducing all efforts
to standard techniques from numerical linear algebra. The algorithm is generically applicable
to super Gaussian potentials and can be used in machine learning applications to infer good
decisions from incomplete data, in settings with many unknown variables. Further, the algo-
rithm allows to reliably operate Bayesian inference in large scale domains, where previously
only convex point estimation techniques could be used. We show how our method applies to
binary classification Bayesian active learning, with thousands of sequential inclusions.

Our algorithm is based on many convenient analytical properties of Gaussian models.
Therefore, one way to attack inference in non-Gaussian models is to represent the non-Gaussian
potentials T (s) by Gaussians N (s|0, γ) to exploit the simplicity of Gaussian computations. In
the following, we will describe two prominent and related approaches: Gaussian scale mix-
tures (section 3.2) and variational bounds (section 3.3). They are applicable to a wide range of
non-Gaussian potentials [Palmer et al., 2006] and naturally lead to a joint Gaussian approxima-
tion to the posterior distribution over the model. We will then concentrate on the variational
bounding technique and its nice analytical properties leading to a scalable and efficient algo-
rithm.

3.2 Gaussian scale mixtures and SBL

Gaussian scale mixtures allow to represent non-Gaussian potentials as a convex combination of
Gaussians: consider a standard normal random variable X ∼ N (0, 1). The random variable
S := θ +

√
γX, γ > 0 follows a Gaussian distributionN (θ, γ) with location parameter θ and scale

parameter
√

γ. If the parameters (θ, γ) have a joint density P(θ, γ) = P(θ)P(γ), independent
of X, we can write

P(s) =
∫ ∫ ∞

0
N (s|θ, γ)P(γ)P(θ)dγdθ. (3.1)

In general, the collection of all S ∼ P(s) with a density of the form of equation 3.1 constitute the
location scale family of the univariate random variable X, which covers a big class of univariate
distributions. In table 3.1, a selection of prominent Gaussian scale mixtures are listed with
their corresponding scale distribution. We look at zero-mean mixtures only, i.e. P(θ) = δ(θ)
allowing to represent non-Gaussian potentials by

T (s) =
∫ ∞

0
N (s|0, γ)P(γ)dγ =

∫ ∞

0

exp
(
− s2

2γ

)
√

2πγ
P(γ)dγ =

∫ ∞

0
T̃ (s; γ)

P(γ)√
2πγ

dγ,

where T̃ (s; γ) denote the respective Gaussian potentials.
Sampling from P(s) is simple: first draw γ ∼ P(γ), then draw s ∼ N (0, γ).
Besides sampling, approximate inference can be done using the framework of sparse Bayesian

learning (SBL) [Tipping, 2001]

2The MRI application from chapter 6 is contained as a special case.
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# Scale distribution P(γ) ∝ Scale Mixture P(s) ∝

1) Exponential, τ > 0, E(γ|τ) τ2

2 exp
(
− τ2

2 γ
)

Laplace, L(s|τ) τ
2 exp (−τ|s|)

2) Gamma on γ−1, G(γ−1|ν, τ) γ1−ν/2 exp
(
− ν

2τ γ−1) ν = 2α, τ = α
β > 0, Student’s t, T (s|ν)

(
1 + s2

ν

)− ν+1
2

3) Infinite Gaussian mixture ∑∞
n=1(−1)n+1n2 exp

(
− 1

2 n2γ
)

Logistic Log(s) exp(−s) · (exp(−s) + 1)−2

4) Sym. stable, α ∈ (1, 2), SSα(γ) PS 1
2 α(γ

−1) Generalised Gaussian, GG(s|α) exp (−|s|α)
5) Improper Jeffrey, J (γ) γ−1 Improper, J (s) |s|−1

6) Inverse Gaussian, IG(γ|α, β) γ−
3
2 exp

(
− 1

2 (α
2/γ + β2γ)

)
Normal-Inv. Gaussian, NIG(s|α, β) K1

(
β
√

α2 + s2
)

/
√

α2 + s2

7) Gamma, α, β > 0, G(γ|α, β) γα−1 exp (−βγ) Variance Gamma, VG(s|α, β) |s|α− 1
2 Kα− 1

2

(
−
√

β/2|s|
)

8) Dirac Mixture DM(γ|σ2, π) ∑i πiδ(γ− σ2
i ) Gaussian MixtureMoG(s|σ2, π) ∑i πiN (s|0, σ2

i )

Figure 3.1: Gaussian scale mixture potentials
1+4) Due to log-concavity for α ≥ 1, the generalised Gaussian distribution also enjoys popular-
ity since it includes the Gaussian and the double exponential distribution [Box and Tiao, 1973,
West, 1987, ch. 3.2].
2) The most common mixture is the Student’s t distribution, e.g. in the relevance vector ma-
chine [Tipping, 2001].
3) One needs to combine a countably infinite amount of Gaussians to get the logistic distribu-
tion, which is closely related to the popular classification likelihood [Stefanski, 1990].
5) Ignorance w.r.t. to the scale of γ can be captured by the non-informative parameter-free but
improper Jeffrey’s prior [Figueiredo, 2002] as scale distribution. But, the density PSα(γ) of
positive stable distributions is non-analytic. Generalised hyperbolic distributions in particular
6+7) are also used in sparse linear models [e.g. Caron and Doucet, 2008], where Kν(·) is the
modified Bessel function of the second kind.
8) Finally, the popular spike and slab models corresponds to a finite Gaussian mixture with
n = 2. The list is far from complete; α-stable distributions and symmetrised Gamma distribu-
tions are used to model images statistics [Wainwright and Simoncelli, 2000], for example.

ln Z c
= ln

∫
N (y|Xu, σ2I)

q

∏
j=1
Tj(sj)du, s = Bu

(eq. 2.17)
= ln

∫
γ�0

Z̃(γ)
q

∏
j=1

Pj(γj)√
2πγj

dγ ≈ ln Z̃(γ?) (3.2)

γ? = arg max
γ�0

ln Z̃(γ)− 1
2

ln |Γ|+
q

∑
j=1

ln Pj(γj),

where the integration w.r.t. u and γ are interchanged and the scale parameters γ are found
via MAP estimation . Instead of MAP estimation, we can apply bounding, which leads to the
same variational bound as in section 3.3 auf der nächsten Seite as shown in appendix E.6 auf
Seite 145. In SBL, Student’s t potentials (see table 3.1), where – for a particular choice for the
parameters in the Gamma scale distribution – the scalar terms ln Pj(γj) = 0 vanish rendering
the optimisation very simple. In the process of MAP estimation for SBL (equivalent to equation
3.2)

γ? = arg min
γ�0

ln |A|+ ln |Γ|+ 1
σ2 min

u
u>Au− 2d>u, (3.3)

many of the values γj become zero, i.e. the posterior approximation collapses to a delta-
distribution for some potentials.3 Although algorithmically efficient, the degenerate posterior
makes drastically overconfident uncertainty statements, which prevents successful experimen-
tal design as experienced in the image acquisition application of chapter 5. Therefore, the ap-
plications for SBL rather lie in the domain of efficient estimation rather than proper assessment

3The one-dimensional equivalent to equation 3.3 for X = σ = 1 is γ? = arg minγ≥0 ln(γ + 1)− d2/(γ−1 + 1)
implying γ? = max(0, d2 − 1). For d ≤ 1, γ? = 0 the potential is pruned out and d > 1, γ? > 0 keeps the potential
in the model.
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of posterior uncertainty. Finally, from the theory point of view it is dangerous to maximise
an approximation to the marginal likelihood since it is not clear whether the underlying exact
marginal likelihood is maximised or the approximation deteriorates. In the next section, we
will maximise a lower bound, which is theoretically more profound while retaining the same
computational complexity as SBL.

3.3 Variational bounds

Besides the scale mixture representation, there is a variational representation of super-Gaussian
potentials as a maximum over scaled Gaussians

T (s) = max
γ>0
N (s|0, γ) f (γ).

In particular, if g(x) = ln T (s), x = s2 is a decreasing and convex function of x > 0, then T (s)
can be represented by a maximum over scaled Gaussians T (s) = maxγ>0N (s|0, γ) f (γ) and if
in addition the higher-order derivatives obey g(2n+1)(x) ≤ 0, g(2n)(x) ≥ 0, then a scale mixture
representation T (s) =

∫ ∞
0 N (s|0, γ)P(γ)dγ is possible [Palmer et al., 2006].

The applicability to a bigger class of super-Gaussian potentials of the variational represen-
tation comes at a cost: the parameters γ are variational parameters; they do not have a direct
statistical semantic as a variance.

3.3.1 Individual potential bounds

As already described in chapter 2.5.9, we use variational lower bounds on every individual
non-Gaussian potential

Tj(sj) ≥ exp
(

β j(γj)

σ2 sj −
1

2σ2γj
s2

j −
hj(γj)

2

)
= T̂j(sj; γj) ∝ N

(
sj|β jγj, σ2γj

)
(3.4)

to obtain the well-known variational relaxation [Girolami, 2001, Palmer et al., 2006, Jaakkola,
1997] ln ZVB of the log partition function ln Z

ln Z ≥ ln CNCT + ln
∫
N (y|Xu, σ2I)

q

∏
j=1
T̂j(b>j u)du = ln ZVB(γ) = ln Z̃(γ)− 1

2

q

∑
j=1

h(γj).

In the following, we drop the index j to increase clarity and focus on symmetric (even) po-
tentials T (s) = T (−s) with symmetric lower bounds T̂ (s; γ) = e−s2/(2σ2γ)−h(γ)/2. However,
lower bounds can also be obtained for non-symmetric potentials, too:
first, the cumulative logistic potential (see figures 2.2a and 3.2) can be symmetrised, i.e. e−βsT (s)
is symmetric with (constant in γ) β = c

2 , c being the class label.
Second, shifting and scaling of s, and scaling of the potential itself can be easily achieved be
modifying the bound

T (s) ≥ T̂ (s; γ)⇒ a · T
(

s− d
g2

)
≥ a · T̂ (s̃; γ̃) , s̃ = s− d, γ̃ = g2γ.

The analytical expression for the bounds are obtained by exploiting the (strong) super-
Gaussianity of the potential T (s). Strong super-Gaussianity implies that g(s) = ln T (s) is
convex and decreasing as a function of x = s2/σ2 [Palmer et al., 2006]. We write g(x) in the
sequel. Fenchel duality [Rockafellar, 1970, section 12], allows to represent g(x) in a variational
form using the conjugate function g∗(p)

g(x) = max
p

xp− g∗(p) = max
γ>0
− x

2γ
− g∗

(
− 1

2γ

)
= max

γ>0
− x

2γ
− h(γ)

2
,
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Figure 3.2: Individual potential bounds
Super-Gaussian potentials can be bounded by scaled Gaussian lower bounds of any width γ.
From left to right: Laplace, cumulative logistic and Student’s t distribution.

where p = − 1
2γ and h(γ) = 2 · g∗(p). This translates into a lower potential bound

T (s) = max
γ>0

exp
(
− 1

2σ2γ
s2 − h(γ)

2

)
, h(γ) = max

x≥0
− x

γ
− 2 · ln T (x),

which is illustrated for some often used potentials in figure 3.2.
Many potentials (besides the ones in figure 3.2) are in fact super-Gaussian. All Gaussian

scale mixtures T (s) =
∫
N (s|0, σ2γ)P(γ)dγ (figure 3.1) are super-Gaussian and the respective

height function h(γ) can be represented using P(γ) [Palmer et al., 2006]. Furthermore, mixtures
of super-Gaussian potentials ∑i αiT (ξis), ξi, αi > 0 are super-Gaussian because the logsumexp
function x 7→ ln(1>ex) is strictly convex and increasing in all xi [Boyd and Vandenberghe, 2004,
section 3.1.5].

3.3.2 Joint variational lower bound

Plugging the individual lower bounds Tj(sj) ≥ T̂j(sj; γj) into the log partition function

ln P(D) = ln Z = ln CNCT + ln
∫
N (y|Xu, σ2I)

q

∏
j=1
Tj(sj)du

and dropping all terms constant in the variational parameters γ yields the variational criterion
φ(γ)

c
= −2 ln ZVB(γ) to be minimised (equation 2.20 in chapter 2.5.9)

φ(γ) =

h(γ)︷ ︸︸ ︷
q

∑
j=1

hj(γj) +
1
σ2 min

u

R(u,γ)︷ ︸︸ ︷
u>Au− 2d>u+ ln |A|, where (3.5)

d = X>y + B>β, and A = X>X + B>Γ−1B.

For a particular value of the variational parameters γ, the posterior approximation Q(u) =
N (u|m, V) has mean m = A−1d = arg minu R(u, γ) and variance V = σ2A−1 (see appendix
C.1). The next section studies convexity properties of φ(γ). Once these are established, we will
discuss efficient scalable and generic minimisation algorithms for solving γ? = arg minγ φ(γ).

3.4 Convexity properties of variational inference

The basic convexity result is simple: φ(γ) is convex iff all strongly super-Gaussian potentials
Tj(sj) are log-concave. We will look at each of the three terms ln |A|, R(u, γ), h(γ) of (equation
3.6) in turn. We start with the log determinant, continue with the least-square term and finish
with the height functions.
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3.4.1 Convexity of log determinant term

Theorem 1 Let X ∈ Rm×n and B ∈ Rq×n be arbitrary matrices and Af(γ) = X>X + B>dg (f(γ))B
with twice continuously differentiable f j(γj) > 0 so that γ 7→ ln |Af(γ)| exists.

1. If f j : R → R+ are log-convex then γ 7→ ln
∣∣∣Af(γ)

∣∣∣ is convex. For f j(γj) = γ−1
j in particular,

γ 7→ ln
∣∣∣Aγ−1

∣∣∣ is convex.

2. If f j : R→ R+ are concave then γ−1 7→ ln
∣∣∣Af(γ−1)

∣∣∣ is concave. For f j(γj) = γ−1
j in particular,

γ−1 7→ ln
∣∣∣Aγ−1

∣∣∣ is concave.

3. If f j : R → R+ are concave then γ 7→ 1> ln f(γ) + ln
∣∣∣A[f(γ)]−1

∣∣∣ is concave. For f j(γj) = γ−1
j

in particular, γ 7→ ln |Γ|+ ln
∣∣∣Aγ−1

∣∣∣ is concave.

4. Let V = σ2A−1
γ−1 be the posterior covariance and ν = dg(BVB>) = VQ[s|D] the marginal

variances of s = Bu. Then, we can bound the marginal variances by 0 � ν � σ2γ.

Part (1) that is novel to our knowledge is proven in appendix E.1, part (2) is obtained by
combining classical results about convex functions [Boyd and Vandenberghe, 2004, sections
3.1.5/3.2.4] and having in mind that γ−1 7→ ln |Aγ−1 | is nondecreasing in every component
γ−1

j . Part (3) is proven in appendix E.2 and the upper bound in part (4) can be seen component-
wise from

νj = σ2b>j A−1
γ−1bj = σ2 max

u
2b>j u− u>(X>X + B>Γ−1B)u

≤ σ2 max
u

2b>j u− s>Γ−1s ≤ σ2 max
sj

2sj − s2
j γ−1

j = σ2γj, s = Bu.

Thus, the term ln |A| is in the variational criterion (equation 3.6) is convex in γ.

3.4.2 Convexity of least-square term

The term R(u, γ) = u>Au− 2d>u = ‖Xu− y‖2 + s>Γ−1s− 2β>s is jointly convex in (u, γ)

since it is a sum of jointly convex terms: ‖Xu− y‖2− 2β>s is a positive semi-definite quadratic
in u and s>Γ−1s is a quadratic−over−linear function in u, γ, which is convex [Boyd and Van-
denberghe, 2004, chapter 3.1.5].

Furthermore, minima of jointly convex functions w.r.t. some of the arguments yield convex
functions [Boyd and Vandenberghe, 2004, chapter 3.2.5] implying convexity of γ 7→ minu R(u, γ).

3.4.3 Convexity of height functions

In appendix E.3, we show that for strongly super-Gaussian potentials (e.g. Gaussian scale mix-
tures) convexity of hj(γj) is equivalent to log-concavity of the the potential Tj(sj). Therefore,
h(γ) = ∑

q
j=1 hj(γj) is a convex function whenever all potentials are log-concave. The respective

expressions for the bounds shown in figure 3.2 are summarised in table 3.1.

3.4.4 Summary

Theorem 2 Let X ∈ Rm×n and B ∈ Rq×n be arbitrary matrices and let P(u|y) be the posterior of a
model with strongly super-Gaussian potentials Tj(sj) of the form P(u|y) ∝ N (y|Xu, σ2I)∏

q
j=1 Tj(sj)

with s = Bu. Further let φ(γ) = h(γ) + 1
σ2 minu R(u, γ) + ln |A| be the variational criterion from

equation 3.6 for the individual potential bound relaxation ln Z
c
≥ − 1

2 φ(γ).
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Potential T (s) = h(γ) =
Laplace exp(−τ|s|) τ2γ

Student’s t (1 + τ
ν s2)−

ν+1
2

{
0
(ν + 1) ln

(
γτ ν+1

ν

)
− (ν + 1) + ν

τγ

γ ≤ ν
τ(ν+1)

γ > ν
τ(ν+1)

Logistic [cosh(τs)]−2

{
0
4 ln cosh(gγ)− 2gγ tanh(gγ)

γ ≤ 1
2τ2

γ > 1
2τ2

Cumulative logistic exp
( cs

2

)
[2 cosh(cs)]−1 2 ln 2 +

{
0
2 ln cosh(gγ)− gγ tanh(gγ)

γ ≤ 4
γ > 4

Table 3.1: Height functions for individual potential bounds
For the logistic and the cumulative logistic potential, we used the function gγ = g(γ) = f−1(γ)
defined as the inverse function of f (x) = x coth(x). In fact, the cumulative logistic height
function hCL(γ) can be written as hCL(γ) = ln 2 + 1

2 hL(γ), where hL(γ) is the height of the
logistic potential and τ =

√
2. We use binary class labels c ∈ {±1}.

1. If all potentials Tj(sj) are log-concave then φ(γ) is convex and is one potential Tj(sj) is not log-
concave, one can find X, B and y so that φ(γ) is not convex.

Note that the Gaussian log partition function ln Z̃(γ) =
∫
N (y|Xu, σ2I)∏

q
j=1 T̃j(sj)du, where

the non-Gaussian potentials Tj(s) have been replaced by Gaussians T̃j(sj) = exp( β j

σ2 sj− 1
2σ2γj

s2
j )

can be written as ln Z̃(γ) c
= − 1

2 [φ(γ)− h(γ)]. It is well known, that γ−1 7→ ln Z̃ is convex, i.e.
γ−1 7→ φ(γ)− h(γ) is concave since γ−1 are the natural parameters of an exponential family
graphical model [Wainwright and Jordan, 2008]. However, the convexity of γ 7→ ln Z̃ did not
receive attention so far and seems to be a special property of the Gaussian case. However, the
knowledge that γ−1 7→ h(γ) is convex for any strongly super-Gaussian potential, does not
reveal any new insights about the concavity properties of γ−1 7→ φ(γ).

Our result settles a longstanding problem in approximate inference: if the posterior mode
of a super-Gaussian model can be found via a convex problem, then a frequently used approx-
imation [Girolami, 2001, Palmer et al., 2006, Jaakkola, 1997] is convex as well.

Convexity of the objective φ(γ) is highly desirable for several reasons: there are no lo-
cal minima problems, i.e. no cumbersome restarting is needed in the optimisation algorithm.
Furthermore, the results are typically robust to small perturbation of the input. However, con-
vexity of φ(γ) alone does not lead to an efficient minimisation algorithm. In the next section,
we will propose a class of algorithms solving the variational problem φ(γ) efficiently in high
dimensions by decoupling the criterion.

3.5 Scalable optimisation algorithms

We start by restating the variational inference objective φ(γ) from equation 3.5

φ(γ, u) = h(γ) +
1
σ2 R(u, γ) + ln |A|, A = X>X + B>Γ−1B, φ(γ) = min

u
φ(γ, u), (3.6)

where s = Bu and R(u, γ) = ‖Xu− y‖2 + s>Γ−1s− 2β>s. We know that φ(γ) is convex when-
ever all potentials are log-concave. The general wisdom in mathematical programming is that
convex optimisation is well understood and basically a solved problem; the division line be-
ing in optimisation is between convex and non-convex optimisation [Boyd and Vandenberghe,
2004] rather than between linear and non-linear optimisation. For our special case, however,
we additionally require computational efficiency and hence scalability.

Already a single exact gradient computation

∂φ(γ, u)
∂γ

=
q

∑
j=1

h′j(γj)− γ−2
[

1
σ2 s� s + dg(B>A−1B)

]
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is very costly for models with large numbers of variables n because matrix inversion in the
dg(B>A−1B) term is an O(n3) operation that cannot be circumvented. Therefore, standard
joint optimisation code like conjugate gradients (CG) or successful quasi-Newton methods such
as BFGS do not scale well with the size of the model n even if B and X are highly structured
matrices.

Another line of attack is coordinate descent, that is iterating over the potentials j = 1..q
while optimising with respect to a single γj at a time as done in Girolami [2001]. Making use
of appendices A.1.1 and A.1.2, the objective restricted to γj is given by

φj(γj) = hj(γj)−
1
σ2 d>

(
A¬j + bjγ

−1
j b>j

)−1
d + ln

∣∣∣A¬j + bjγ
−1
j b>j

∣∣∣ , d = X>y + B>β

c
= hj(γj) +

(d>vj/σ)2

γj + b>j vj
+ ln(1 + γ−1

j b>j vj), vj = A−1
¬j bj.

As a result, we can optimise φ(γ) w.r.t. γj by solving the linear system4 vj = A−1
¬j bj of size

n× n and using standard convex optimisation techniques in 1-d. Again, if q and n are large,
such algorithms are intractable even for highly structured matrices.

We therefore need an approach satisfied with a small number of these expensive calcula-
tions and exploits structure of φ(γ) other than its convexity. Our double loop algorithm as
proposed in the following, decouples the objective and minimises a simple surrogate function
that is iteratively updated instead. Consequently, we need to solve only few linear systems to
minimise φ(γ).

3.5.1 Facts about the objective function

Let us collect some facts about the optimisation problem minγ φ(γ) of equation 3.6, which
go beyond joint convexity properties of φ(γ, u) as proven in section 3.4. First of all, the terms
R(u, γ) and ln |A| are jointly convex independently of the type of potentials as proven in section
3.4; only h(γ) depends on the potentials itself.

1. Joint convexity allows to interchange the order of minimisation between the variables
minγ minu φ(γ, u) = minu minγ φ(γ, u).

2. Fixing γ, the criterion φ(γ, u) is a quadratic function in u amenable to efficient and scal-
able minimisation schemes such as conjugate gradients (CG) or iteratively reweighted
least squares (IRLS) as described in section 2.3.1.

3. The terms h(γ) and R(u, γ) naturally decouple or decompose into a sum over the single
components γj since

h(γ) +
1
σ2 R(u, γ)

c
=

q

∑
j=1

[
hj(γj) +

s2
j

σ2γj

]
, (3.7)

where we dropped terms not depending on γ. Decoupling in γ is highly desirable since
it reduces a q-dimensional minimisation to q simple 1-dimensional minimisations.

4. The following facts are known about the coupled term ln |A|: the function γ 7→ ln |A| is
convex whereas γ−1 7→ ln |A|, γ 7→ ln |Γ| and γ 7→ ln |A|+ ln |Γ| = ln |AΓ| are concave.

We will exploit the facts 1-4 in various ways to construct efficient minimisation schemes.

3.5.2 Double loop minimisation

A powerful class of ideas dealing with non-convex minimisation problems are so-called double
loop algorithms, also known as convex-concave programming (CCCP) or difference of convex

4Solving a linear system with conjugate gradients is a scalable operation as long as the matrix-vector-
multiplication with the system matrix A is faster than O(n2).
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Figure 3.3: Double loop algorithm
Minimisation of a non-convex objective φ(γ) = φ∩(γ) + φ∪(γ) by linearly upper bounding the
concave part φ∩(γ) ≤ φt

/(γ) and minimising the surrogate function φt(γ) = φt
/(γ) + φ∪(γ)

instead. If we iterate over t, the algorithm will converge to a point with ∂φ
∂γ = 0.

(DC) programming approaches. In statistics, machine learning and computer vision, these al-
gorithms are widespread: the expectation-maximisation method [Dempster et al., 1977], CCCP
[Yuille and Rangarajan, 2003] for approximate inference in discrete models or variational mean
field [Attias, 2000] for continuous models being only among the most prominent examples.

The basic underlying idea is the decomposition of the objective function φ(γ) = φ∩(γ) +
φ∪(γ) into a convex part φ∪(γ) and a concave part φ∩(γ), which is possible for any func-
tion. In every iteration t of the algorithm, the concave part is upper bounded by a linear
function φ∩(γ) ≤ φt

/(γ) tight at the current location γt and the (hence convex) surrogate func-
tion φt(γ) = φt

/(γ) + φ∪(γ) is minimised to yield the next location γt+1 = arg minγ φt(γ) as
illustrated in figure 3.3 and detailed in algorithm 3.1. Under mild conditions, the sequence
{γt}t=1..T converges to a stationary point of the exact criterion φ(γ). Refitting the bound φt

/(γ)

or iterating over t is referred to as the outer loop and minimising the surrogate function φt(γ)

is termed the inner loop. Since the upper bounds φt
/(γ)

c
= z>1 γ and φt

/(γ
−1)

c
= z>2 γ−1 have to

be tight at the current location γt, their respective slopes z1,2 are given by z1 = ∂
∂γ φ(γt) and

z2 = −γ2 � ∂
∂γ φ(γt).

We use the double loop ideas not only to deal with non-log-concave potentials such as the
Student’s t potential, where the height function hj(γj) is not convex, but most importantly we
use double loop algorithms to decouple the ln |A| part of φ(γ) by a linear upper bound. From
Fenchel and using fact 4 from section 3.5.1 duality there are two possible bounds:

(1) φ∩(γ) = ln |A|+ ln |Γ| ≤ z>γ− φ∗∩(z)
c
= ∑

q
j=1 zjγj =: φ/(γ), and

(2) φ∩(γ−1) = ln |A| ≤ z>γ−1 − φ∗∩(z)
c
= ∑

q
j=1 zjγ

−1
j =: φ/(γ

−1).
(3.8)

Figure 3.4 provides a graphical illustration. As a result, we can upper bound ln |A| itself by the
two convex expressions φ

(1)
∪ (γ) and φ

(2)
∪ (γ)

z>ln |AΓ|γ− 1> ln γ
c
= φ

(1)
∪ (γ) ≥ ln |A| ≤ φ

(2)
∪ (γ)

c
= z>ln |A|γ

−1, (3.9)

where we dropped the offsets independent of γ. We can see from figure 3.4 that φ
(1)
∪ (γ) reflects

the behaviour of ln |A| more faithfully for large values of γ and overestimates ln |A| for small
γ. In turn, φ

(2)
∪ (γ) is relatively exact for small γ but rather loose for large γ. During the opti-

misation, φ
(1)
∪ (γ) favours larger γ and φ

(2)
∪ (γ) prefers smaller γ. While double loop algorithms

have been proposed for non-convex approximate inference, we show that they can also be used
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Figure 3.4: Two log determinant bounds
Two ways of upper bounding concave functions containing ln |A| = ln |X>X + B>Γ−1B| by
linear functions in order to decouple them. Note that the upper left bound is linear in γ whereas
the upper right bound is linear in γ−1. As shown in the lower plot, both upper bounds are
however convex in γ and decompose into a sum. The example uses m = n = q = 1 and X = 1,
B =

√
2; the bounds are tight at γ∗ = 1.5. Note that the two bounds are tighter for different

values of γ.

to drastically speed up the optimisation of convex inference problems. No matter, which bound
is used in practise, the resulting algorithm is globally convergent.

3.5.3 Practical decompositions

In case, some potentials Tj(sj) are not log-concave, we can decompose the height functions into
a convex and a concave part h(γ) = h∩(γ)+ h∪(γ); if all Tj(sj) are log-concave, then h∩(γ) ≡ 0.
We can use the same bounding idea to obtain h(γ) ≤ z>h∩γ− h∗∩(z) + h∪(γ)

c
= z>h∩γ + h∪(γ).

In combination with the two possibilities of equation 3.9 to decouple ln |A|, we get the general
decomposition

φ(γ)
c
≤ min

u
h∪(γ) +

1
σ2 R(u, γ) + (

z1�0︷ ︸︸ ︷
zh∩ + zln |AΓ|)

>γ + (

z2�0︷ ︸︸ ︷
zln |A|)

>γ−1 − (

z3∈{0,1}q︷ ︸︸ ︷
sign(zln |AΓ|))

> ln γ

=: min
u

φz(γ, u) (3.10)

where z1 contains the sum of the weights for the bounds on h∩(γ) and ln |A|+ ln |Γ|, respec-
tively. The presence of zln |AΓ| � 0 switches on the respective, components of the indicator
vector z3 ∈ {0, 1}q. Furthermore, z2 � 0 is the weight for the bound on ln |A|. For convex h(γ),
we have zh∩ = 0.

In theory, both types of bounds φ
(1)
∪ (γ) and φ

(2)
∪ (γ) can be used; also convex combinations

αφ
(1)
∪ (γ)+ (1− α)φ

(2)
∪ (γ), α ∈ [0, 1] can be used without any additional computational effort. In

our implementation (see section 3.6) and experiments, we use the direct approach via φ
(2)
∪ (γ),

where z1 = z3 = 0. For the non-log-concave Student’s t potential (see table 3.1), where h∪(γ) =
ν
τ γ−1 and h∩(γ) = (ν + 1) ln γ 6= 0, we naturally obtain zh∩ � 0 suggesting the φ

(1)
∪ (γ) bound.

Using fact 1 from section 3.5.1 and joint convexity of the surrogate objective φz(u, γ), we can
interchange the order of minimisation minγ minu φz(u, γ) = minu minγ φz(u, γ). Combined
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Algorithm 3.1 General double loop variational inference algorithm

Outer loop: marginal variances ν = dg
(

BVQ(u|D)[u]B>
)

by Lanczos (section 3.5.4)
Refit upper bound φz(γ, u) of equation 3.10
repeat

if φ
(1)
∪ bound used then

z1 ← zh∩ − γ2 � ν/σ2 + γ−1, z2 ← 0
else

z1 ← zh∩ , z2 ← ν/σ2

end if
Inner loop: marginal means u∗ = EQ(u|D)[u] by IRLS (section 3.5.5)

if First outer loop then
Init u← 0.

else
Initialise u← u∗ (previous solution).

end if
Find u∗ ← arg minu φz(u) of equation 3.12
repeat

Solve linear system ∂
2

φz(u)
∂u∂u> d← − ∂φz(u)

∂u by CG to obtain Newton direction d
Find step size λ by line search along φz(u + λd)
Update u← u + λd

until Inner loop converged
Update s = Bu∗, γj ← arg minγ hj(sj, γj) of equation 3.11

until Outer loop converged
The objective φ(γ, u) of equation 3.6 is jointly minimised w.r.t. γ and u by refitting an auxiliary
upper bound φz(γ, u) in every outer loop iteration, which is then minimised in the inner loop
by a Newton algorithm. Both the inner and the outer loop use standard computational linear
algebra tools like conjugate gradients and Lanczos as numerical primitives. All computations
are reduced to matrix vector multiplications with B and X rendering the approach scalable.

with the decoupling in γ (section 3.5.1 fact 3) and the definition

h∗j (sj) =
σ2

2
min

γj
hj(sj, γj), hj(sj, γj) := h∪,j(γj) +

(
s2

j

σ2 + z2,j

)
γ−1

j + z1,jγj − z3,j ln γj (3.11)

we obtain

2
σ2 φz(u) = min

γ
φz(γ, u) =

2
σ2

(
q

∑
j=1

h∗j (sj) +
1
2
‖Xu− y‖2 − β>s

)
, (3.12)

which is in standard form (section 3.5.1 fact 2) to be minimised using the iteratively reweighted
least squares (IRLS) algorithm [Green, 1984] as introduced in chapter 2.3.1 and detailed for the
inner loop minimisation of φz(u) in section 3.5.5.

How the decomposition from above can be used to minimise φ(γ, u) is summarised in
algorithm 3.1. We will take a more detailed look at the outer and inner loop in the following.

3.5.4 Outer loop using the Lanczos algorithm

Outer loop updates of z1/2 require the computation of ν = σ2dg(BA−1B>) = VQ[s|D], or
equivalently all variances of the current Gaussian approximation to the model for fixed widths
γ. For large numbers of variables n, the variances ν of the Gaussian model can be estimated by
the Lanczos algorithm [Lanczos, 1950, Schneider and Willsky, 2001] as mentioned in chapter
2.5.4 and detailed in algorithm 3.2. In the absence of simple sparsity structure of A, the Lanczos
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Algorithm 3.2 Lanczos tridiagonalisation algorithm

Require: symmetric operator A ∈ Rn×n, initial q ∈ Rn, q>q = 1 and empty Q = []
v← Aq
for i = 1, 2, .., k do

αi ← q>v
r← v− αiq
if i > 1 then

r = r−QQ>r, reorthogonalise using Gram-Schmidt
end if
βi ←

√
r>r, stop if too small

if i > 1 then
ei =

√
αi − d2

i−1, di ← βi
ei

else
ei =
√

ai, di ← βi
ei

end if
Q← [Q, q], include new Lanczos vector
if i < k then

v← q, q← 1
βi

r, v← Aq− βiv
end if

end for

T←


α1 β1 0

β1 α2
. . .

. . . . . . βk−1
0 βk−1 αk

, L←


e1 0 0

d1 e2
. . .

. . . . . . 0
0 dk−1 ek


Ensure: Q ∈ Rn×k, Q>Q = I, Q>AQ = T, LL> = T
The iterative Lanczos procedure after Cornelius Lanczos allows to compute eigenvalues and
eigenvectors of square matrices A. As an extension to the power method, it builds an orthog-
onal basis of the Krylov subspace {q, Aq, .., Ak−1q} using k matrix vector multiplications with
A. The procedure is fully scalable in n since A is only implicitly accessed through matrix vector
multiplications. Storage requirements of the Lanczos algorithm are O(n); the Gram-Schmidt
process needs O(n · k) for the matrix Q. Similarly, computation is dominated by the k matrix
vector multiplications and O(n · k2) for the orthogonalisation.
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Figure 3.5: Convergence of Lanczos eigenvalues
Convergence of the eigenvalue/eigenvector pairs for symmetric matrices A ∈ Rn×n, n = 300
after k = 100 Lanczos iterations with different spectra. Left: linear spectrum. Centre: loga-
rithmic spectrum. Right: sigmoid spectrum. The plot shows the exact eigenvalues along with
converged Lanczos eigenvalue estimates (red) and not yet converged estimates (blue). Con-
vergence happens from the smallest and largest eigenvalue inwards (linear, logarithmic) and
preferably at places with large spectral gap (logarithmic, sigmoid).
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procedure yields a generic variance estimate. From part 4 of the theorem in 3.4, we know that
the variances ν can be bounded by the variational parameters γ using σ2γ � ν � 0.

In a nutshell, the precision matrix A is iteratively approximated by a low-rank representa-
tion QTQ>, Q ∈ Rn×k orthonormal, T ∈ Rk×k tridiagonal, and k � n, where the eigenval-
ue/eigenvector pairs (θi, wi) of T = WΘW> rapidly converge to eigenvalue/eigenvector pairs
(ωi, vi) of A = VΩV>. More specifically, convergence happens simultaneously from the small-
est and largest eigenvalue inwards roughly ordered by the spectral gap between consecutive
eigenvalues [Golub and van Loan, 1996, § 9.1.4] as illustrated by figure 3.5. Every iteration (out
of the k iterations) requires only a single matrix vector multiplication with A.

By A−1 ≈ QT−1Q>, we can iteratively estimate ν ≈ σ2dg(BQT−1Q>B>) =: ν̂ using the
Lanczos procedure (algorithm 3.2). Starting from w = ν̂ = 0, and inserting the recurrence

w← Bq− dk−1w
ek

, ν̂← ν̂ + σ2w�w

right after the inclusion of the new Lanczos vector yields the componentwise monotonically
increasing estimator ν̂ of the Gaussian variance ν. In this usage, the Lanczos algorithm can be
thought of as solving many linear system in parallel, with the same A but different right hand
sides.

Lanczos implementations for large n are not straightforward due to loss of orthogonality in
the matrix Q. As a consequence, practical Lanczos codes require an explicit Gram-Schmidt or-
thogonalisation [Golub and van Loan, 1996, § 9.2]. Ironically, it is the rapid convergence of the
eigenvalues of T to the eigenvalues of A that causes the numerical problems [Paige, 1976, Par-
lett and Scott, 1979]. Re-orthogonalisation is not only computationally intense O(n k2) but also
requires significant memory O(n k). Thus, the algorithm can be run with moderate k only, sig-
nificantly underestimating many components in ν̂. This inaccuracy seems to be unavoidable:
we are not aware of a general bulk variances estimator improving on Lanczos, and variances
are required to drive any algorithm for minγ φ.

Importantly, systematic underestimation of ν by ν̂ does not seem to harm our algorithm
in practise if used in the experimental design loop [Seeger, 2010a]. It appears that the design
scores for the most promising candidates are accurately estimated relative to each other, even
though only a small number of Lanczos vectors k is used to approximate A. Inaccurate vari-
ances mean that minu φz(γ, u) is not exactly tangent to φ(γ) at the current γ after an outer
loop update. However, the (inner loop) minimisation is accurate, since mean computations by
conjugate gradients are required only. Given the apparent intractability of the variance com-
putation, this is a critical feature of our decoupling approach. Compared to other tractable
inference approximations, where many dependencies are ruled out up front independent of
the data, e.g. by factorisation assumptions in structured mean field, our approximation is fully
data-dependent, with the extremal covariance eigenvectors being homed in by Lanczos similar
PCA.

As a further consequence of the Lanczos approximation, our analytical convergence and
convexity results are challenged: convexity can be compromised by the approximate calcula-
tion of ν, however convergence of the double loop algorithm can analytically be established if
a fixed number of converged smallest eigenvector/eigenvalue pairs are used [Seeger, 2010a]
instead of all k Lanczos vectors in Q.

3.5.5 Inner loop by IRLS using conjugate gradients

The inner loop criterion as stated in equation 3.12

φz(u) =
q

∑
j=1

h∗j (sj) +
1
2
‖Xu− y‖2 − β>s (3.13)

is a sum of a quadratic and a decoupled part. Let us consider the implicitly defined 1-dimensional
functions h∗j (sj) (see equation 3.11) as simple for now and let us assume, we have the first two
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derivatives d
ds h∗j (sj) and d2

ds2 h∗j (sj) available. In fact, the inner loop optimisation has the same
structure as a MAP estimation or penalised least squares estimation problem of chapter 2.3.1
with h∗j (sj)− β jsj taking the role of the penaliser. Thus, we can apply a variant of the Newton-
Raphson algorithm to minimise φz(u) called iteratively reweighted least squares (IRLS), see
chapter 2.3.1. IRLS typically converges after a few Newton steps requiring the gradient and the
Hessian in each

g =
∂φz(u)

∂u
= B>(h′ − β) + X>p, p = Xu− y, h′j =

d
dsj

h∗j (sj)

H =
∂2φz(u)
∂u∂u>

= B>dg(h′′)B + X>X, h′′j =
d2

ds2
j

h∗j (sj)

to compute the Newton descent direction

d = −H−1g⇔
(

B>dg(h′′)B + X>X
)

d = B>(β− h′)− X>r

by solving an n× n linear system. Given useful structure in X, B (such as sparsity or fast mul-
tiplication otherwise), this optimisation is scalable to very large sizes; the system is solved by
(preconditioned) linear conjugate gradients (LCG). Next we compute a step size by conducting
a 1-dimensional line search along d. Evaluation of φz along the line u + λd can be done in
negligible time if Bd, ‖Xd‖2 and β>Bd− p>Xd are precomputed

φz(λ)
c
= φz(u + λd) c

=
q

∑
j=1

h∗j (sj + λb>j d) + λ2 ‖Xd‖2

2
− λ(β>Bd− r>Xd)

so that no matrix vector multiplication (MVM) needs to be computed during the line search.
Upon inner loop convergence, the minimiser u∗ = arg minu φz(u) is the mean of the current
posterior approximation Q(u|D, γ). Note that we did not use any operations other than MVMs
with X and B making the approach fully scalable if these can be done efficiently.

For Laplace potentials and the φ
(2)
∪ (γ) bound, the scalar operations have a simple analytic

form: hj(γj) = τ2
j γj and h∗j (sj) = στj

√
σ2z2,j + s2

j . However, for other potentials such as the

cumulative logistic (see table 3.1), we are not aware of an analytic expression for hj(γj). Since
hj and h∗j are defined by scalar convex minimisations, all terms can be computed implicitly
whenever required using Newton minimisation in one dimension and lookup tables. A generic
implementation based on gj(xj) = ln Tj(sj), xj = s2

j , g′j(xj) and g′′j (xj) alone, is provided in
appendix E.4. Even with many implicitly defined h∗j , the inner loop can be minimised efficiently
because the h∗j (sj) computations can be vectorised or parallelised straightforwardly.

Log-concave potentials

For all log-concave potentials such as logistic and cumulative logistic, the inner loop computa-
tions can be simplified considerably because of the simple relation

h∗j (sj) = β jς j − σ2g(ς j), gj(sj) = ln Tj(sj), ς j = sign(sj)
√

s2
j + σ2z2,j

h∗′(s) =
[
β− σ2g′ (ς)

] s
ς

, h∗′′(s) =

[
β− σ2

(
g′ (ς) +

s2ς

ν
g′′ (ς)

)]
ν

ς3

that we derive in appendix E.5. As a consequence, for the evaluation of h∗j (sj) we only need
to know the log potential ln Tj(sj); there is no need to deal with hj(γj) at any time in the algo-
rithm. The minimum value γj needed for the outer loop update admits a similar expression
(computed in appendix E.5)

γj =
ς j

β j − σ2g′j(ς j)
=

sj

h∗j
′(sj)

, gj(sj) = ln Tj(sj), ς j =
√

s2
j + σ2z2,j.
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Again, there is no need to deal with hj(γj) – only gj(sj) = ln Tj(sj) and its derivatives g′j(sj)

and g′′j (sj) need to be known.

3.5.6 Properties of the algorithm

In the following, we look at the double loop algorithm from a more general perspective and
describe the precise relationship to MAP estimation. Furthermore, we discuss some known
statistical features related to sparse estimation along with computational properties of the al-
gorithm.

MAP estimation versus inference

The optimisation problems to compute MAP estimator ûMAP (see chapter 2.5.6) and the poste-
rior mean estimator ûVB in the inner loop (IL) of our variational relaxation (see φz(u) in section
3.5.5) have the same IRLS structure if we employ the φ

(2)
∪ (γ) bound for log-concave potentials,

where z1 = z3 = 0 and use for h∗j (sj) the expression from appendix E.5:

û = arg min
u

1
2
‖Xu− y‖2 + ρ(s), s = Bu

ρMAP(s) = −σ2
q

∑
j=1

ln Tj(sj) = −σ2 ln T (s)

ρIL(s) = h∗(s)− β>s = β>(ς− s) + ρMAP(ς), ς = sign(s)�
√

s2 + ν, ν = σ2z2.

First, for ν = 0, we exactly recover MAP estimation. Second, the larger the marginal variances
νj, the less h∗j (sj) depends on sj. In other words, the marginal variances νj smoothly interpo-

late between MAP estimation and least squares estimation ûLS = arg minu
1
2 ‖Xu− y‖2. The

relative trade-off between the two is adaptively computed in the outer loop; depending on the
data.

Now, we can also understand the effect of underestimating marginal variances in the Lanc-
zos algorithm in the outer loop (section 3.5.4): the variational Bayesian inference relaxation
mean estimate is biased towards the posterior mode.

As a consequence, every inner loop iteration solves a “smoothed” MAP estimation problem
and every outer loop adaptively updates the penaliser h∗(s) by recomputing ν. Therefore,
variational inference can be summarised as executing several MAP iterations with adaptive
data-driven shrinkage of coefficients sj. The term selective shrinkage was first employed by
Ishwaran and Rao [2005] in bioinformatics.

Sparse linear models and experimental design

Let us look at the special case of the sparse linear model (SLM) with B = I and Laplace po-
tentials − ln T (s) = τ

σ ‖s‖1, β = 0 to gain some understanding of our variational inference
relaxation in the context of sparse estimation. The respective ρ-penalised least squares prob-
lems for MAP estimation and the inner loop in variational inference are

û = arg min
u

1
2στ
‖Xu− y‖2 + ρ (u) , ρMAP(u) = ‖u‖1 , ρVB(u) = min

z

∥∥∥√u2 + σ2z
∥∥∥

1
− φ∗∩(z),

where the variational penaliser ρVB(u) is only implicitly defined using φ∗∩ the Legendre-Fenchel
dual of γ−1 7→ ln |A|: φ∗∩(z) = minγ−1 z>γ−1− ln |A|. Both approaches are instances of shrink-
age estimators, i.e. u is shrunk towards zero as opposed to ordinary least squares estima-
tion (see chapter 2.2.1). The L1-norm in MAP estimation yields sparse solutions with many
components being zero, since the minimum û lies at a corner of the L1-ball. On top of that,
our variational inference relaxation applies shrinkage in an adaptive way depending on the
marginal variances ν = VQ[u|D]: for model parameters with small variance, the shrinkage
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Figure 3.6: Reductions in variational inference

effect is larger, high variance leads to smaller penalty. Underestimation of ν due to the Lanczos
procedure leads to more sparsity in the estimate û.

Exact sparsity is certainly a computationally valuable property allowing to scale inference
up to large models, however whether it is statistically appropriate depends on the application.
In Bayesian approaches [Tipping, 2001, Wipf and Nagarajan, 2008], sparsity is equivalent to
γj = 0 for some variational parameters and hence vanishing marginal variance νj = 0 since
νj ≤ σ2γj, from theorem 4 of section 3.4. Zero variance or equivalently absolute certainty is
very dangerous because not only γj is clamped but also all correlations between sj and other
components si become zero. The posterior distribution Q(u|D) only exists in the orthogonal
complement of the space spanned by the columns of BJ with γj = 0. Especially, in the experi-
mental design context, where a trade-off between exploration and exploitation has to be found,
it is problematic to rule out potentials early, because they cannot be explored later.

Scalability and complexity

The scalability of our algorithm comes from a number of appropriate reductions illustrated
in figure 3.6. On the first level, the complicated inference problem (high-dimensional non-
Gaussian integration) is relaxed to a convex program (variational approach). The correspond-
ing optimisation problem is decoupled in the double loop algorithm: inner loop iterations re-
duce to the estimation of means EQ[u|D] in a linear-Gaussian model with LCG, and IRLS. The
outer loop computes Gaussian variances VQ[s|D] by the Lanczos algorithm. On a higher level,
we fit a sequence of Gaussian models to the exact non-Gaussian posterior. Hence, both in-
ner and outer loops consist of standard algorithms from numerical linear algebra, routinely
employed for very large systems. These naturally reduce to matrix-vector multiplications
(MVMs). As a result, the inference algorithm is as fast as the MVMs with X and B render-
ing computations as scalable as MAP estimation. Therefore, exploitable structure in the system
matrices X and B in terms of fast MVMs is crucial for our algorithm to be scalable to large
numbers of variables n. The cost of an MVM with a sparse matrix is linear in the number of
non-zeros, an MVM with a Fourier matrix demands O(n · ln n) and a wavelet transform re-
quires O(n). Otherwise, our application to trajectory design for magnetic resonance imaging,
where n = 2562, q ≈ 3n, m = 1

4 n in chapter 6 would be impossible to deal with. Consequently,
the computational complexity of the algorithm is measured in number of MVMs needed, and
can be related to MAP estimation and a naive approach to minimising φ(γ).

Recall that n is the number of latent variables, m the number of Gaussian, and q the num-
ber of non-Gaussian potentials. Further, we denote by k the number of Lanczos iterations in
outer loop updates, by NCG the number of LCG iterations to solve a system with A, and by
NNewt the number of Newton steps for IRLS. The computational complexities of the double
loop algorithm, MAP estimation and alternative minimisation schemes is contrasted in table
3.2.

While the means of a large linear-Gaussian model can be estimated by a single linear sys-
tem, the variances are much harder to obtain. In fact, we do not know of a general bulk variance
estimator which is as accurate as LCG, but not vastly more expensive. To understand the ra-
tionale behind our algorithm, note that the computation of∇γφ is as difficult as the estimation
of z. Our algorithm requires these expensive steps only a few times (usually 4 or 5 outer loop
iterations are sufficient), since they are kept out of the inner loop, where most of the progress
is made. In contrast, most standard gradient-based optimisers require many evaluations of
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algorithm # MVMs storage
full Newton for MAP NNewt · NCG O(m + n + q)
one coordinate descent step in φ q · NCG O(m + n + q)
one exact ∇γφ q · NCG O(m + n + q)
one approx ∇γφ k + NCG O(k · n + q)
double inner: û = arg minu φz(u) = EQ[u|D] NNewt · NCG O(n + q)
loop outer: z = dg(BA−1B>) = σ−2VQ[s|D] k O(k · n + q)

Table 3.2: Computational complexity of alternative algorithms

∇γφ to converge. As discussed below, our decomposition also means that the variances can be
estimated rather poorly, while still obtaining a practically useful algorithm.

Empirically, NNewt ≈ 10 for our inner loops, and we never run more than 5 outer loop iter-
ations, typically 1 or 2 only. Lanczos codes come with additional costs to keep Q orthonormal,
up to O(n · k2). The table shows that a naive minimisation of φ(γ) is not scalable, since we
have to solve O(q) n × n linear systems for a single gradient step. While MAP estimation is
faster in practise, its scaling differs from our algorithm’s only by a moderate constant factor.

3.6 Implementation

In our implementation, we use the bounding technique with objective φ
(2)
∪ (γ) (equation 3.9).

We offer an entire toolbox for generalised linear model inference and estimation (glm-ie) whose
code can be obtained from http://mloss.org/software/view/269/. The code is fully compat-
ible to both Matlab 7.x5 and GNU Octave 3.2.x6. It has been thouroughly tested and verified.
Its modular and generic structure entail extensibility and quite a big range of applications.

3.6.1 The glm-ie toolbox

The glm-ie toolbox handles generalised linear models of the general form detailed in chapter
2.5. Both MAP or PLS estimation (chapter 2.7) and variational Bayesian inference are covered.

The toolbox contains the following objects:

• Potential functions T (s): They have to be positive, symmetrisable and super-Gaussian.
An implementation requires ln T (s), its first two derivatives [ln T ]′(s), [ln T ]′′(s) and the
symmetry parameter β. We offer Gaussian, Laplacian, Sech-square, Logistic, Exponential
power and Student’s t potentials.

• Penalty functions ρ(s): The have to be continuously differentiable; convexity is not re-
quired but makes the PLS problem much simpler. An implementation requires the evalu-
ation of ρ(s) and its first two derivatives ρ′(s), ρ′′(s). We offer a penalty function derived
from a potential function that allows to express the inner loop as a PLS problem. Other
penalties comprise the logarithmic, quadratic, power and zero penalisers.

• PLS solvers: MAP, PLS and the inner loop require optimisation routines. We use a generic
interface implementing a CG solver, a CG solver with backtracking line search, a quasi-
Newton algorithm and a truncated Newton procedure.

• Matrix operators: The algorithm uses MVMs as building blocks. Therefore, we have
many matrix objects implemented such as finite difference, convolution, wavelet and
Fourier transform matrices.

More details and illustrating examples can be found in the documentation of the toolbox.

5The MathWorks, http://www.mathworks.com/
6The Free Software Foundation, http://www.gnu.org/software/octave/

http://mloss.org/software/view/269/
http://www.mathworks.com/
http://www.gnu.org/software/octave/
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3.7 Bayesian active learning for binary classification

In the following, we apply the scalable algorithm to a large-scale binary classification task on
datasets frequently used in machine learning research.

Probabilistic classification is a special case of our generalised linear model framework. We
use linear classifiers with cumulative logistic likelihoods (see figure 2.2b and chapter 4)

P(cj|u, bj) =
1

1 + exp(−cj · τsig
σ b>j u)

= Tj(sj; cj), s = Bu,

where u ∈ Rn denotes the classifier weights, bj ∈ Rn contains the feature vector for data point
j, cj ∈ {±1} is the class label and τsig > 0 is a scaling parameter. The matrix B = [b1, .., bq]> ∈
Rq×n contains the q feature vectors bj as rows and the vector c ∈ Rq collects respective labels
cj of the training set of size q. For the remainder, we concentrate on a Gaussian weight prior
P(u) = N (u|0, σ2I) yielding X = I, y = 0 and m = n. However, if the number of features
n is much larger than the training set size, a sparsity prior might become appropriate leading
to X = [], y = [], σ = 1 and m = 0; formally, we append I to B increasing q by n and add n
Laplacian sparsity potentials Tj(sj) = exp(− τlap

σ |sj|). In our experiments, we use both sparsity
and Gaussian weight priors but concentrate on the Gaussian case to simplify notation.

The goal of active learning is to reduce the amount of labels cj needed for an accurate pre-
diction by actively selecting the data points bj from a candidate set J for which the labels cj are
to be acquired. We summarise all candidates bj, j ∈ J (also the ones already included in the
model) in a big matrix BJ so that B contains a subset of the rows of BJ . We adopt a sequential
(greedy) approach, where in each block K new candidates are chosen from J . The basis for
active learning or Bayesian experimental design is the current representation of uncertainty in
the classifier weights – the Bayesian posterior

Q(u) = N (u|m, V) ≈ P(u|c) ∝ P(u)
q

∏
j=1

P(cj|u, bj) = N (u|0, σ2I)
q

∏
j=1
Tj(sj; cj)

as approximated by the double loop algorithm of section 3.5. More specifically, the active learn-
ing decision about which candidate to include next is entirely based on the approximate poste-
rior marginals

P(sj|c) ≈ Q(sj) = N (sj|µj, σ2ρj), µj = m>bj, ρj =
1
σ2 b>j Vbj.

The next subsection explains how to include a new potential Tj(sj; cj) into the model.

3.7.1 Non-Gaussian potential inclusion

If we wish to include the potential Tj(sj; cj) into posterior of the current model, we have to
assign a new variational parameter γj for the respective potential. The lower bound to P(D ∪
{bj, cj}) seen as a function of γj is given by

P(D ∪ {bj, cj})
c
≥ e−hj(γj)/2EQ(u)

[
eσ−2(β jsj−s2

j /(2γj))
]

∝ e−φj(γj)/2

up to a constant not depending on γj, where we treat all other variational parameters as fixed.
After some algebra, we obtain

φj(γj) = hj(γj) + log κj −
(µj + ρjβ j)

2

σ2ρjκj
, κj := 1 +

ρj

γj
, (3.14)

where Q(sj) = N (sj|µj, σ2ρj). Therefore, the novel γj is computed as γ?
j = arg minγj φj(γj)

using standard 1d Newton techniques from convex minimisation.
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The marginals (µ, ρ)J for all candidates from J are updated as: ρ′J = ρJ − 1
ρj+γj

w�w,

µ′J = µJ +
β j−µj/γj

κj
w, where κj = 1 + ρj/γj and w = BJA−1bj (one linear system). We use

the solution to recompute ρj, µj, solve again for γj, and plug these back into µJ , ρJ . This cor-
rects for Lanczos inaccuracies (especially since ρj is underestimated by the Lanczos procedure).

Moreover, u′∗ = u∗
β j−µj/γj

κj
A−1bj, and ln |A′| = ln |A|+ ln κi.

At the end of a block, we re-run our variational algorithm in order to update all variational
parameters jointly (within a block, only γj for novel model potentials are updated). In practise,
a single outer loop iteration suffices for these runs. Importantly, the first outer loop update
comes for free, since the model marginals (part of µJ , ρJ ), u∗, and log |A| have been kept
valid. Therefore, only a single Lanczos run per block is required. Finally, since variances are
underestimated by Lanczos, it may happen that components in ρJ become negative within a
block. Such components are simply removed, and if they correspond to model potentials, their
marginals are recomputed by solving linear systems at the end of the block.

While there is some computational complexity to our scheme, note that the principal com-
putational primitives are always the same: solving linear systems with A, and variance estima-
tion by Lanczos based on A.

3.7.2 Active learning scores

Active learning can be done using a large variety of criteria. For an empirical review and
collection of heuristics see Schein and Ungar [2007]. We use sequential Bayesian active learning,
meaning that the scores for inclusion decisions are computed based on the marginals Q(sj)
of the posterior distribution. Given that, we can employ a host of different scores, and the
particular ones used in our experiments (information gain IG and classifier uncertainty CU)
could certainly be improved upon by heuristic experience with the task.

Our active learning algorithm starts with a posterior approximation based on randomly
drawn instances. In the subsequent design phase, we sequentially include blocks of K data
points each. If the task requires a large number of sequential inclusions, tractability is retained
by choosing K large enough.

Each iteration consists of an initial Lanczos run to estimate marginal posterior moments,
K ≥ 1 inclusions (appending K new rows to B), and a re-optimisation of all potential param-
eters γ. Within a block, the marginals Q(sj) = N (sj|µj, σ2ρj), j ∈ J containing all model and
candidate potentials, are kept valid at all times. Note that µJ = BJ u∗ (since u∗ = EQ(u)[u|D]),
and that B is a part of BJ . For larger K, our method runs faster, since the variational parameters
γ are updated less frequently, while for smaller K, the more frequent refits to the non-Gaussian
posterior may result in better sequential decisions.

Each inclusion within a block consists of scoring all remaining candidates, picking the win-
ner, and updating the marginals µJ , ρJ . Let bj be a new candidate row of B, and sj = b>j u. In
our experiments, we use several design scores, based on the current (Gaussian) marginal Q(sj):
information gain IG and classifier uncertainty CU.

1. The classifier uncertainty score

CU(bj) = −
∣∣∣∣Q(cj = +1)− 1

2

∣∣∣∣ ,

prefers candidates with predictive probability Q(cj = +1) close to 1
2 . We compute the

required expectation

Q(cj) =
∫

Q(sj|c)P(cj|sj)dsj =
∫
N (sj|µj, σ2ρj)Tj(sj; cj = +1)dsj

by Gaussian quadrature.
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2. The information gain score (chapter 2.6.2, equation 2.26) is given by

IG(bj) = ∑
cj=±1

Q(cj)KL[Q′(sj; cj) ‖Q(sj)],

where Q′(sj; cj) is the new approximation to ∝ Q(sj)Tj(sj; cj) after an additional potential

Tj(sj; cj) has been included. If Q′(sj) ∝ Q(sj)e
σ−2(β jsj− 1

2 s2
j /γj) at the minimiser γ?

j , then

KL[Q′ ‖Q] =
1
2

(
log κj +

ρj

κj

(
(β j − µj/γj)

2

σ2κj
− γ−1

j

))
,

which has to be computed for both label assumptions cj = ±1, where β j = cjτsigσ/2.

Both scores are used in the following experiments.

3.7.3 Experiments

We use three standard datasets for binary classification7, outlined in table 3.3. The feature
vectors are sparse, and a MVM with the matrix B costs O(#nz).

Dataset q q+/q− n # non-zeros
a9a 32, 561 0.32 123 451, 592

real-sim 72, 201 0.44 20, 958 3, 709, 083
rcv1 677, 399 1.10 42, 736 49, 556, 258

Table 3.3: Dimensionality of the considered datasets

We randomly select 16, 36 and 50 thousand instances for training; the rest is kept for testing.
The hyperparameters τsig, σ2, and τlap were determined on the full datasets, where τlap is only
present if Laplacian potentials are used. Results are given in figure 3.7. We ran sparse logistic
regression (with Laplace prior) on a9a only. As expected, our algorithm runs longer in this
case, and is less tolerant w.r.t. larger block sizes K: the Laplace prior potential parameters have
to be updated in response to new cases, in order to do their job properly. Although sparse clas-
sification improves on the Gaussian prior case beyond about 2800 cases, active learning works
better with a Gaussian prior for fewer inclusions. This may be due to the case that the Lanczos
variance estimation is exact for q < k, and in general more accurate in the Gaussian prior case.
Over all sets, we see clear improvements of active learning with the classifier uncertainty score
CU over random sampling of data cases. Somewhat surprisingly, the information gain score
does much less well in the binary classification case.

3.8 Discussion

We have shown that a frequently used variational relaxation to Bayesian inference in super-
Gaussian generalised linear models is convex if and only if the posterior is log-concave –
variational inference is convex whenever MAP estimation is convex in the same model. The
technique covers a wide class of models ranging from robust regression and classification to
sparse linear modelling and complements the large body of work on efficient point estimation
in sparse linear models. Our theoretical insights settle a long-standing question in approximate
variational inference in continuous variable models and add details to the relationship between
sparse estimation and sparse inference.

Further, we have developed a scalable double loop minimisation algorithm that runs or-
ders of magnitude faster than previous coordinate descent methods, enhancing the scope for
the Bayesian design methodology to large scales. This is achieved by decoupling the criterion

7http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 3.7: Classification errors for different design scores
Performance of information gain and classifier uncertainty versus random sampling (results
on full training set also shown). We started the design phase after 100, 100, 500, 800 randomly
drawn initial cases respectively, all remaining training cases were candidates. The prior vari-
ance was set to σ2 = 1 in all cases, τsig = 1, 1, 3, 3 respectively. k = 80, 80, 750, 750 Lanczos
vectors were computed for outer loop updates/candidate scoring. For a9a, we used design
blocks of size K = 3, and K = 20 for the others.

and using ideas from concave-convex programming. Computational efforts are reduced to fast
algorithms known from estimation and numerical mathematics and exploiting fast MVMs with
the structured matrices X and B. Our generic implementation, can be run with any configura-
tion of super-Gaussian, log-concave potentials using simple scalar minimisations, without any
heuristics to be tuned.

From a graphical model perspective, our method reduces approximate inference in non-
Gaussian (continuous variable) Markov random fields (MRFs) to repeated computations in
Gaussian MRFs. In this context, we especially emphasise the importance of Gaussian marginal
variance computations by the Lanczos algorithm. The considerable literature on Gaussian MRF
techniques [Malioutov et al., 2006a,b] can be put to new use with our relaxation.

An interesting direction for future work is to find out what is so special about the chosen
variational relaxation so that it leads to a scalable algorithm and to try and develop scalable
variants of other approximate inference techniques.





Chapter 4

Gaussian Process Classification

We provide a comprehensive overview of many recent algorithms for approximate inference
in Gaussian process models for probabilistic binary classification. The relationships between
several approaches are elucidated theoretically, and the properties of the different algorithms
are corroborated by experimental results. We examine both the quality of the predictive dis-
tributions and the suitability of the different marginal likelihood approximations for model se-
lection (selecting hyperparameters) and compare to a gold standard based on MCMC. Interest-
ingly, some methods produce good predictive distributions although their marginal likelihood
approximations are poor. Strong conclusions are drawn about the methods: the expectation
propagation algorithm is almost always the method of choice unless the computational budget
is very tight. We also extend existing methods in various ways, and provide unifying code
implementing all approaches.

Note that all derived inference algorithms are a special case of the generalised linear model
framework of chapters 2.3, 2.4 by setting σ = 1, B = I, γ = σ2

n and formally substituting
X>y ← y and X>X ← K−1 and that all analytical properties derived in chapter 3 carry over.
The exposition is a revised and extended version of Nickisch and Rasmussen [2008] and details
about the code are taken from Rasmussen and Nickisch [2010], http://mloss.org/software/
view/263/ and http://gaussianprocess.org/gpml/code/.

We start the chapter by introducing Gaussian processes in section 4.1 and show how they
can be used in probabilistic classification models in section 4.2. Next, each of the sections 4.3,
4.4, 4.5, 4.6 and 4.8 describe a particular deterministic approximate inference method; the rela-
tion between them are reviewed in section 4.9. A sampling approach to approximate inference
serving as gold standard is presented in section 4.10. Numerical implementation issues are
discussed in section 4.11. We then empirically compare the approximate inference algorithms
with each other and the gold standard in section 4.12 and draw an overall conclusion in section
4.13.

4.1 Introduction

Gaussian processes (GPs) can conveniently be used to specify prior distributions for Bayesian
inference. In the case of regression with Gaussian noise, inference can be done simply in closed
form, since the posterior is also a GP. For non-Gaussian likelihoods, such as, e.g. in binary
classification, exact inference is analytically intractable.

One prolific line of attack is based on approximating the non-Gaussian posterior with a
tractable Gaussian distribution. One might think that finding such an approximating GP is
a well-defined problem with a largely unique solution. However, we find no less than three
different types of solution in the recent literature: Laplace approximation (LA) [Williams and
Barber, 1998], expectation propagation (EP) [Minka, 2001a] and Kullback-Leibler divergence (KL)
minimisation [Opper and Archambeau, 2009] comprising variational bounding (VB) [Gibbs and
MacKay, 2000, Jaakkola and Jordan, 1996] as a special case. Another approach is based on a
factorial approximation, rather than a Gaussian [Csató et al., 2000].
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Practical applications reflect the richness of approximate inference methods: LA has been
used for sequence annotation [Altun et al., 2004] and prostate cancer prediction [Chu et al.,
2005], EP for affect recognition [Kapoor and Picard, 2005], VB for weld cracking prognosis
[Gibbs and MacKay, 2000], Label regression (LR) serves for object categorisation [Kapoor et al.,
2007] and MCMC sampling is applied to rheumatism diagnosis by Schwaighofer et al. [2003].
Brain computer interfaces [Zhong et al., 2008] even rely on several (LA, EP, VB) methods.

We compare these different approximations and provide insights into the strengths and
weaknesses of each method, extending the work of Kuss and Rasmussen [2005] in several di-
rections: We cover many more approximation methods (VB, KL, FV, LR), put all of them in com-
mon framework and provide generic implementations dealing with both the logistic and the
cumulative Gaussian likelihood functions and clarify the aspects of the problem causing diffi-
culties for each method. We derive Newton’s method for KL and VB. We show how to accel-
erate MCMC simulations. We highlight numerical problems, comment on computational com-
plexity and supply runtime measurements based on experiments under a wide range of con-
ditions, including different likelihood and different covariance functions. We provide deeper
insights into the methods behaviour by systematically linking them to each other. Finally, we
review the tight connections to methods from the literature on Statistical Physics, including the
TAP approximation and TAPnaive.

The quantities of central importance are the quality of the probabilistic predictions and the
suitability of the approximate marginal likelihood for selecting parameters of the covariance
function (hyperparameters). The marginal likelihood for any Gaussian approximate posterior
can be lower bounded using Jensen’s inequality, but the specific approximation schemes also
come with their own marginal likelihood approximations.

We are able to draw clear conclusions. Whereas every method has good performance un-
der some circumstances, only a single method gives consistently good results. We are able to
theoretically corroborate our experimental findings; together this provides solid evidence and
guidelines for choosing an approximation method in practise.

4.2 Gaussian processes for binary classification

A GP prior over latent the function f (x) ∼ GP(m(x), k(x, x′)) in conjunction with a likelihood
P (yi| fi), leads to a posterior process f∗ that is conditioned on the data (xi, yi)i=1..n. In case
P (yi| fi) = N ( fi|yi, σ2) is Gaussian, the posterior process will again be a GP. As with gener-
alised linear models, we can absorb every link function into the likelihood and can therefore
model non-negativity along the lines of the warped Gaussian process of Snelson et al. [2004]. In
geospatial statistics, this technique is known under the name kriging for generalised linear spatial
models [Diggle et al., 1998].

Although most of the technical machinery is fully generic in the likelihood P (yi| fi), we con-
centrate on probabilistic binary classification based on Gaussian processes. Keep in mind that
any of the likelihoods in figure 2.2 can be used. For a graphical model representation see figure
4.1 and for a 1d pictorial description consult figure 4.2. Given data points xi from a domain X
with corresponding class labels yi ∈ {−1,+1}, one would like to predict the class membership
probability P (y∗|x∗, y, X) for a test point x∗. This is achieved by using a latent function f whose
value is mapped into the unit interval by means of a sigmoid function sig : R→ [0, 1] so that the
class membership probability P (y = +1|x) can be written as sig ( f (x)). The class membership
probability must normalise ∑y P (y|x) = 1, which leads to P (y = +1|x) = 1− P (y = −1|x)
and consequently to P (y|x) = sig ( f (x))

1+y
2 − 1 + (1− sig ( f (x)))

1−y
2 (defining 00 = 1). If the

sigmoid function satisfies the point symmetry condition sig(t) = 1− sig(−t), the likelihood can
be compactly written as

P (y|x) = sig (y · f (x)) .
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We consider two point symmetric sigmoids (see likelihood figure 2.2a)

siglogit(t) :=
1

1 + e−t (cumulative logistic), and (4.1)

sigprobit(t) :=
∫ t

−∞
N (τ|0, 1)dτ (cumulative Gaussian). (4.2)

The two functions are very similar at the origin (showing locally linear behaviour around
sig(0) = 1/2 with slope 1/4 for siglogit and 1/

√
2π for sigprobit) but differ in how fast they

will approach 0/1 if t goes to infinity. Namely in the logarithmic domain, we have for large
negative values of t the following asymptotics:

siglogit(t) ≈ exp (−t) and sigprobit(t) ≈ exp(−1
2

t2 + 0.158t− 1.78), for t� 0.

Linear decay of ln(siglogit) corresponds to a weaker penalty for wrongly classified examples
than the quadratic decay of ln(sigprobit).

For notational convenience, the following shorthands are used: the matrix X = [x1, . . . , xn]
of size n× d collects the training points, the vector y = [y1, . . . , yn]> of size n× 1 collects the
target values and latent function values are summarised by f = [ f1, . . . , fn]

> with fi = f (xi).
Observed data is written asD = {(xi, yi) |i = 1, . . . , n} = (X, y). Quantities carrying an asterisk
refer to test points, i.e. f∗ contains the latent function values for test points [x∗,1, . . . , x∗,m] =
X∗ ⊂ X . Covariances between latent values f and f∗ at data points x and x∗ follow the same
notation, namely [K∗∗]ij = k(x∗,i, x∗,j), [K∗]ij = k(xi, x∗,j), [k∗]i = k(xi, x∗) and k∗∗ = k(x∗, x∗),
where [A]ij denotes the entry Aij of the matrix A.

Given the latent function f , the class labels are assumed to be Bernoulli distributed and
independent random variables, which gives rise to a factorial likelihood, factorising over data
points (see figure 4.1):

P (y| f ) = P (y|f) =
n

∏
i=1

P (yi| fi) =
n

∏
i=1

sig (yi fi) (4.3)

A GP [Rasmussen and Williams, 2006] is a stochastic process fully specified by a mean func-
tion m(x) = E [ f (x)] and a positive definite covariance function k(x, x′) = V [ f (x), f (x′)]. This
means that a random variable f (x) is associated to every x ∈ X , so that for any set of inputs
X ⊂ X , the joint distribution P (f|X, θ) = N (f|m0, K) is Gaussian with mean vector m0 and
covariance matrix K. The mean function and covariance functions may depend on additional
hyperparameters θ. For notational convenience we will assume m(x) ≡ 0 throughout. Thus, the
elements of K are Kij = k(xi, xj, θ).

By application of Bayes’ rule, one gets an expression for the posterior distribution over the
latent values f

P (f|y, X, θ) =
P (y|f)P (f|X, θ)∫
P (y|f)P (f|X, θ)df

=
N (f|0, K)

P (y|X, θ)

n

∏
i=1

sig (yi fi) , (4.4)

where Z = P (y|X, θ) =
∫

P (y|f)P (f|X, θ)df denotes the marginal likelihood or evidence for
the hyperparameter θ. The joint prior over training and test latent values f and f∗ given the
corresponding inputs is

P (f∗, f|X∗, X, θ) = N
([

f
f∗

]∣∣∣∣ 0,
[

K K∗
K>∗ K∗∗

])
. (4.5)

When making predictions, we marginalise over the training set latent variables

P (f∗|X∗, y, X, θ) =
∫

P (f∗, f|X∗, y, X, θ)df =
∫

P (f∗|f, X∗, X, θ)P (f|y, X, θ)df, (4.6)
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where the joint posterior is factored into the product of the posterior and the conditional prior

P (f∗|f, X∗, X, θ) = N
(

f∗|K>∗ K−1f, K∗∗ −K>∗ K−1K∗
)

. (4.7)

Finally, the predictive class membership probability p∗ := P (y∗ = 1|x∗, y, X, θ) is obtained by
averaging out the test set latent variables

P (y∗|x∗, y, X, θ) =
∫

P (y∗| f∗)P ( f∗|x∗, y, X, θ) d f∗ =
∫

sig (y∗ f∗)P ( f∗|x∗, y, X, θ)d f∗. (4.8)

The integral is analytically tractable for sigprobit [Rasmussen and Williams, 2006, ch. 3.9] and
can be efficiently approximated for siglogit [Williams and Barber, 1998, app. A].

Class labels yi ∈ {0, 1} y1 y2 yn π∗ Prediction p∗ ∈ [0, 1]

Sigmoid

Covariance k(x, x′)

GP latent function f f1 f2 . . . fn f∗

Data points xi ∈ X x1 x2 xn x∗

Figure 4.1: Graphical model for binary Gaussian process classification
Circles represent unknown quantities, squares refer to observed variables. The horizontal thick
line means fully connected latent variables. An observed label yi is conditionally independent
of all other nodes given the corresponding latent variable fi. Labels yi and latent function
values fi are connected through the sigmoid likelihood; all latent function values fi are fully
connected, since they are drawn from the same GP. The labels yi are binary, whereas the pre-
diction p∗ is a probability and can thus have values from the whole interval [0, 1].

Stationary covariance functions

In preparation for the analysis of the approximation schemes described, we investigate some
simple properties of the posterior for stationary covariance functions in different regimes en-
countered in classification. Stationary covariances of the form k(x, x′, θ) = σ2

f g(|x− x′|/`) with
g : R→ R a monotonously decreasing function1 and θ = {σf , `} are widely used. The follow-
ing section supplies a geometric intuition of that specific prior in the classification scenario by
analysing the limiting behaviour of the covariance matrix K as a function of the length scale
` and the limiting behaviour of the likelihood as a function of the latent function scale σf . A
pictorial illustration of the setting is given in figure 4.3.

4.2.0.1 Length scale

Two limiting cases of “ignorance with respect to the data” with marginal likelihood Z = 2−n

can be distinguished, where 1 = [1, . . . 1]> and I is the identity matrix (see appendix F.4):

lim
`→0

K = σ2
f I

lim
`→∞

K = σ2
f 11>.

For very small length scales (` → 0), the prior is simply isotropic as all points are deemed
to be far away from each other and the whole model factorises. Thus, the (identical) posterior
moments can be calculated dimension-wise. (See figure 4.3, regimes 1, 4 and 7.)

1Furthermore, we require g(0) = 1 and limt→∞ g(t) = 0.
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For very long length scales (` → ∞), the prior becomes degenerate as all data points are
deemed to be close to each other and takes the form of a cigar along the hyper-diagonal. (See
figure 4.3, regimes 3, 6 and 9.) A 1d example of functions drawn from GP priors with different
lengthscales ` is shown in figure 4.2 on the left. The length scale has to be suited to the data; if
chosen too small, we will overfit, if chosen too high underfitting will occur.
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Figure 4.2: Pictorial one-dimensional illustration of binary Gaussian process classification.
Plot a) shows 3 sample functions drawn from GPs with different length scales `. Then, three
pairs of plots show distributions over functions f : R→ R and sig( f ) : R→ [0, 1] occurring in
GP classification. b+c) the prior, d+e) a posterior with n = 7 observations and f+g) a posterior
with n = 20 observations along with the n observations with binary labels. The thick black
line is the mean, the grey background is the ± standard deviation and the thin lines are sample
functions. With more and more data points observed, the uncertainty is gradually shrunk. At
the decision boundary the uncertainty is smallest.

4.2.0.2 Latent function scale

The sigmoid likelihood function sig (yi fi) measures the agreement of the signs of the latent
function and the label in a smooth way, i.e. values close to one if the signs of yi and fi are
the same and | fi| is large, and values close to zero if the signs are different and | fi| is large.
The latent function scale σf of the data can be moved into the likelihood ˜sigσf

(t) = sig(σ2
f t),

thus σf models the steepness of the likelihood and finally the smoothness of the agreement by
interpolation between the two limiting cases “ignorant” and “hard cut”:

lim
σf→0

sig(t) ≡ 1
2

“ignorant"

lim
σf→∞

sig(t) ≡ step(t) :=
{

0, t < 0; 1
2 , t = 0; 1, 0 < t “hard cut"

In the case of very small latent scales (σf → 0), the likelihood is flat causing the posterior to
equal the prior. The marginal likelihood is again Z = 2−n. (See figure 4.3, regimes 7, 8 and 9.)

In the case of large latent scales (σf � 1), the likelihood approaches the step function. (See
figure 4.3, regimes 1, 2 and 3.) A further increase of the latent scale does not change the model
anymore. The model is effectively the same for all σf above a threshold.

4.2.1 Gaussian approximations

Unfortunately, the posterior over the latent values (equation 4.4) is not Gaussian due to the non-
Gaussian likelihood (equation 4.3). Therefore, the latent distribution (equation 4.6), the predic-
tive distribution (equation 4.8) and the marginal likelihood Z cannot be written as analytical
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Figure 4.3: Gaussian process classification: prior, likelihood and exact posterior.
Nine numbered quadrants show the posterior obtained by multiplication of different priors
and likelihoods. The leftmost column illustrates the likelihood function for three different
steepness parameters σf and the upper row depicts the prior for three different length scales `.
Here, we use σf as a parameter of the likelihood. Alternatively, rows correspond to “degree of
Gaussianity” and columns stand for “degree of isotropy“. The axes show the latent function
values f1 = f (x1) and f2 = f (x2). A simple toy example employing the cumulative Gaus-
sian likelihood and a squared exponential covariance k(x, x′) = σ2

f exp(−‖x− x′‖2 /2`2) with
length scales ln ` = {0, 1, 2.5} and latent function scales ln σf = {−1.5, 0, 1.5} is used. Two data
points x1 =

√
2, x2 = −

√
2 with corresponding labels y1 = 1, y2 = −1 form the dataset.

expressions2. To obtain exact answers, one can resort to sampling algorithms (MCMC). How-
ever, if sig is concave in the logarithmic domain, the posterior can be shown to be unimodal
motivating Gaussian approximations to the posterior. Five different Gaussian approximations
corresponding to methods explained later onwards are depicted in figure 4.4.

A quadratic approximation to the log likelihood φ( fi) := ln P (yi| fi) at f̃i

φ( fi) ≈ φ( f̃i) + φ′( f̃i)( fi − f̃i) +
1
2

φ′′( f̃i)( fi − f̃i)
2 = −1

2
wi f 2

i + bi fi + const fi

motivates the following approximate posterior Q (f|y, X, θ)

ln P (f|y, X, θ)
(4.4)
= −1

2
f>K−1f +

n

∑
i=1

ln P (yi| fi) + constf

quad. approx.
≈ −1

2
f>K−1f− 1

2
f>Wf + b>f + constf

m:=(K−1+W)−1b
= −1

2
(f−m)>

(
K−1 + W

)
(f−m) + constf

= lnN (f|m, V) =: ln Q (f|y, X, θ) , (4.9)

where V−1 = K−1 + W and W denotes the precision of the effective likelihood (see equation

2One can write down exact expressions for the first two moments m∗(x) and k∗(x, x′) of the posterior process
f∗(x) conditioned on the observed data D = (y, X) but the involved integrals are not tractable[Csató and Opper,
2002]:

m∗(x) = E [ f∗(x)|D] = k>∗ α α = 1
Z
∫

P (f|X, θ)
∂P(y|f)

∂f df

k∗(x, x′) = C [ f∗(x), f∗(x′)|D] = k∗∗ + k>∗ C−1k′∗ C−1 = 1
Z
∫

P (f|X, θ)
∂2P(y|f)

∂f∂f> df− αα>
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Figure 4.4: Five Gaussian approximations to the posterior
Different Gaussian approximations to the exact posterior (in grey) using the regime 2 setting
of figure 4.3 are shown. The exact posterior is represented in grey by a cross at the mode and
a single equiprobability contour line. From left to right: the best Gaussian approximation (in-
tractable) matches the moments of the true posterior, the Laplace approximation does a Taylor
expansion around the mode, the EP approximation iteratively matches marginal moments, the
variational method maximises a lower bound on the marginal likelihood and the KL method
minimises the Kullback-Leibler to the exact posterior. The axes show the latent function values
f1 = f (x1) and f2 = f (x2).

4.11). It turns out that the methods discussed in the following sections correspond to particular
choices of m and V.

Let us assume, we found such a Gaussian approximation to the posterior with mean m
and (co)variance V. Consequently, the latent distribution for a test point becomes a tractable
one-dimensional Gaussian P ( f∗|x∗, y, X, θ) = N ( f∗|µ∗, σ2

∗) with the following moments [Ras-
mussen and Williams, 2006, p. 44 and 56]:

µ∗ = k>∗ K−1m = k>∗ α α = K−1m
σ2
∗ = k∗∗ − k>∗

(
K−1 −K−1VK−1)k∗ = k∗∗ − k>∗

(
K + W−1)−1 k∗

(4.10)

Since Gaussians are closed under multiplication, one can – given the Gaussian prior P (f|X, θ)
and the Gaussian approximation to the posterior Q (f|y, X, θ) – deduce the Gaussian factor
Q (y|f) so that Q (f|y, X, θ) ∝ Q (y|f)P (f|X, θ). Consequently, this Gaussian factor can be
thought of as an effective likelihood. Five different effective likelihoods, corresponding to meth-
ods discussed subsequently, are depicted in figure 4.5. By “dividing” the approximate Gaussian
posterior (see appendix F.5) by the true Gaussian prior we find the contribution of the effective
likelihood Q (y|f):

Q (y|f) ∝
N (f|m, V)

N (f|0, K)
∝ N

(
f| (KW)−1 m + m, W−1

)
(4.11)

We see (also from equation 4.9) that W models the precision of the effective likelihood. In
general, W is a full matrix containing n2 parameters.3 However, all algorithms maintaining a
Gaussian posterior approximation work with a diagonal W to enforce the effective likelihood
to factorise over examples (as the true likelihood does, see figure 4.1) in order to reduce the
number of parameters. We are not aware of work quantifying the error made by this assump-
tion.

4.2.2 Sparse approximations

Different authors proposed to sparsify Gaussian process classification to achieve computational
tractability. The support vector machine is naturally a sparse kernel machine, however it cannot

3A non-diagonal matrix W =

[
1.4834 −0.4500
−0.4500 1.4834

]
is obtained from K =

[
1 0.9

0.9 1

]
, y1 = y2 = 1 and step

function likelihood P(yi| fi) = (sign(yi fi) + 1)/2 by numerical moment matching on a grid with n = 1000 on the

interval fi ∈ [−5, 5] m =

[
0.8850
0.8850

]
, V =

[
0.3625 0.2787
0.2787 0.3625

]
.
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Figure 4.5: Five effective likelihoods
A Gaussian approximation to the posterior induces a Gaussian effective likelihood (equation
4.11). Exact prior and likelihood are shown in grey. Different effective likelihoods are shown;
order and setting are the same as described in figure 4.4. The axes show the latent function
values f1 = f (x1) and f2 = f (x2). The effective likelihood replaces the non-Gaussian likelihood
(indicated by three grey lines). A good replacement behaves like the exact likelihood in regions
of high prior density (indicated by grey ellipses). EP and KL yield a good coverage of that
region. However LA and VB yield too concentrated replacements.

entirely be interpreted in a probabilistic framework [Sollich, 2002]. Sparse online Gaussian
processes (SOGP) were derived in Csató [2002], the informative vector machine (IVM) was
introduced by [Lawrence et al., 2004] and the relevance vector machine (RVM) was suggested
by Tipping [2001]. SOGP keep an active set of expansion vectors, discarded data points are
represented as a projection in the subspace of the active set. The IVM is a method for greedily
forward selecting informative data-points based on information theoretic measures. The RVM
is a degenerate Gaussian process that does not lead to reliable posterior variance estimates
[Rasmussen and Quiñonero-Candela, 2005].

4.2.3 Marginal likelihood

Prior knowledge over the latent function f is encoded in the choice of a covariance function k
containing hyperparameters θ. In principle, one can do inference jointly over f and θ, e.g. by
sampling techniques. Another approach to model selection is maximum likelihood type II also
known as the evidence framework of MacKay [1992], where the hyperparameters θ are chosen
to maximise the marginal likelihood or evidence P (y|X, θ). In other words, one maximises the
agreement between observed data and the model. Therefore, one has a strong motivation to
estimate the marginal likelihood.

Geometrically, the marginal likelihood measures the volume of the prior times the likeli-
hood. High volume implies a strong consensus between our initial belief and our observations.
In GP classification, each data point xi gives rise to a dimension fi in latent space. The like-
lihood implements a mechanism, for smoothly restricting the posterior along the axis of fi to
the side corresponding to the sign of yi . Thus, the latent space Rn is softly cut down to the
orthant given by the values in y. The log marginal likelihood measures, what fraction of the
prior lies in that orthant. Finally, the value Z = 2−n corresponds to the case, where half of the
prior lies on either side along each axis in latent space. Consequently, successful inference is
characterised by Z > 2−n.

Some posterior approximations (sections 4.3 and 4.4) also provide an approximation to the
marginal likelihood, other methods provide a lower bound (sections 4.5 and 4.6). Any Gaussian
approximation Q (f|θ) = N (f|m, V) to the posterior P (f|y, X, θ) gives rise to a lower bound
ZB to the marginal likelihood Z by application of Jensen’s inequality. This bound is also used
in the context of sparse approximations [Seeger, 2003].

ln Z = ln P (y|X, θ) = ln
∫

P (y|f)P (f|X, θ)df = ln
∫

Q (f|θ) P (y|f)P (f|X, θ)

Q (f|θ) df

Jensen
≥

∫
Q (f|θ) ln

P (y|f)P (f|X, θ)

Q (f|θ) df =: ln ZKL (4.12)



4.3. LAPLACE’S METHOD (LA) 61

Some algebra (appendix F.6) leads to the following expression for ln ZKL:

n

∑
i=1

∫
N ( f |, 0, 1) ln sig

(
yi

{√
Vii f + mi

})
df︸ ︷︷ ︸

1) data fit

+
1
2
[n−m>K−1m︸ ︷︷ ︸

2) data fit

+ ln
∣∣∣VK−1

∣∣∣− tr
(

VK−1
)

︸ ︷︷ ︸
3) regularizer

]

(4.13)
Model selection means maximisation of ln ZKL. Term 1) is a sum of one-dimensional Gaus-

sian integrals of sigmoid functions in the logarithmic domain with adjustable offset and steep-
ness. The integrals can be numerically computed in an efficient way using Gauss-Hermite
quadrature [Press et al., 1993, §4.5]. As the sigmoid in the log domain takes only negative
values, the first term will be negative. That means, maximisation of the first term is done
by shifting the log-sigmoid so that the high-density region of the Gaussian is multiplied by
small values. Term 2) is the equivalent of the data-fit term in GP regression [Rasmussen and
Williams, 2006, ch. 5.4.1]. Thus, the first and the second term encourage fitting the data by
favouring small variances Vii and large means mi having the same sign as yi. The third term
can be rewritten as − ln |I + KW| − tr

(
(I + KW)−1) and yields −∑n

i=1 ln(1 + λi) +
1

1+λi
with

λi ≥ 0 being the eigenvalues of KW. Thus, term 3) keeps the eigenvalues of KW small, thereby
favouring a smaller class of functions – this can be seen as an instance of Occam’s razor.

Furthermore, the bound

ln ZKL =
∫

Q (f|θ) ln
P (f|y, X, θ)P (y|X)

Q (f|θ) df = ln Z−KL (Q (f|θ) ‖ P (f|y, X, θ))(4.14)

can be decomposed into the exact marginal likelihood minus the Kullback-Leibler (KL) diver-
gence between the exact posterior and the approximate posterior. Thus by maximising the
lower bound ln ZKL on ln Z, we effectively minimise the KL-divergence between P (f|y, X, θ)
and Q (f|θ) = N (f|m, V). The bound is tight if and only if Q (f|θ) = P (f|y, X, θ).

4.3 Laplace’s method (LA)

A second order Taylor expansion around the posterior mode m leads to a natural way of con-
structing a Gaussian approximation to the log-posterior Ψ(f) = ln P (f|y, X, θ) [Williams and
Barber, 1998, Rasmussen and Williams, 2006, ch. 3]. The mode m is taken as the mean of the
approximate Gaussian. Linear terms of Ψ vanish because the gradient at the mode is zero. The
quadratic term of Ψ is given by the negative Hessian W, which - due to the likelihood’s factorial
structure - turns out to be diagonal. The mode m is found by Newton’s method.

Posterior

P (f|y, X, θ) ≈ N (f|m, V) = N
(

f|m,
(

K−1 + W
)−1

)
m = arg max

f∈Rn
P (y|f)P (f|X, θ)

W = − ∂2 ln P (y|f)
∂f∂f>

∣∣∣∣
f=m

= −
[

∂2 ln P (yi| fi)

∂ f 2
i

∣∣∣∣
fi=mi

]
ii

Marginal likelihood

The unnormalised posterior P (y|f)P (f|X, θ) has its maximum h = exp (Ψ(m)) at its mode
m, where the gradient vanishes. A Taylor expansion of Ψ is then given by Ψ(f) ≈ h− 1

2 (f−
m)>(K−1 + W)(f −m). Consequently, the log marginal likelihood can be approximated by
plugging in the approximation of Ψ(f).
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ln Z = ln P (y|X, θ) = ln
∫

P (y|f)P (f|X, θ)df = ln
∫

exp (Ψ(f))df

≈ ln h + ln
∫

exp
(
−1

2
(f−m)>

(
K−1 + W

)
(f−m)

)
df

= − ln P (y|m)− 1
2

m>K−1m− 1
2

ln |I + KW| (4.15)

4.4 Expectation propagation (EP)

EP [Minka, 2001b] is an iterative method to find approximations based on approximate marginal
moments, which can be applied to Gaussian processes. See Rasmussen and Williams [2006,
ch. 3] for details. The individual likelihood terms are replaced by unnormalised Gaussians

P (yi| fi) ≈ Z−1
i N

(
fi|µi, σ2

i
)

so that the approximate marginal moments of Q ( fi) :=
∫
N (f|0, K)∏n

j=1 Z−1
j N

(
f j|µj, σ2

j

)
df¬i

agree with the marginals of
∫
N (f|0, K)P (yi| fi)∏j 6=i Z−1

j N
(

f j|µj, σ2
j

)
df¬i of the approxima-

tion based on the exact likelihood term P
(
yj| f j

)
. That means, there are 3n quantities µi, σ2

i
and Zi to be iteratively optimised. Convergence of EP is not generally guaranteed, but there
always exists a fixed-point for the EP updates in GP classification [Minka, 2001a]. If the EP
iterations converge, the solution obtained is a saddle point of a special energy function [Minka,
2001a]. However, an EP update does not necessarily imply a decrease in energy. For our case
of log-concave likelihood functions, we always observed convergence, but we are not aware of
a formal proof.

Posterior

Based on these local approximations, the approximate posterior can be written as

P (f|y, X, θ) ≈ N (f|m, V) = N
(

f|m,
(

K−1 + W
)−1

)
W =

[
σ−2

i

]
ii

m = VWµ =

[
I−K

(
K + W−1

)−1
]

KWµ, µ = (µ1, . . . , µn)
>

Marginal likelihood

From the likelihood approximations, one can directly obtain an expression for the approximate
log marginal likelihood.

ln Z = ln P (y|X, θ) = ln
∫

P (y|f)P (f|X, θ)df

≈ ln
∫ n

∏
i=1

t
(

fi, µi, σ2
i , Zi

)
P (f|X, θ)df

= −
n

∑
i=1

ln Zi −
1
2

µ>
(

K + W−1
)−1

µ− 1
2

ln
∣∣∣K + W−1

∣∣∣− n
2

ln 2π (4.16)

= −
n

∑
i=1

ln
Zi√
2π
− 1

2
m>

(
K−1 + K−1W−1K−1

)
m− 1

2
ln
∣∣∣K + W−1

∣∣∣ =: ln ZEP

The lower bound provided by Jensen’s inequality ZKL (equation 4.13) is known to be below the
approximation ZEP obtained by EP [Opper and Winther, 2005, page 2183]. From ZEP ≥ ZKL
and Z ≥ ZKL it is not clear, which value one should use. In principle, ZEP could be an inaccurate
approximation. However, our experimental findings and extensive Monte Carlo simulations
suggest that ZEP is almost exact.
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4.4.1 Thouless, Anderson & Palmer method (TAP)

Based on ideas rooted in Statistical Physics, one can approach the problem from a slightly dif-
ferent angle [Opper and Winther, 2000]. Individual Gaussian approximationsN ( fi|µ¬i, σ2

¬i) are
only made to predictive distributions P

(
fi|xi, y\i, X\i, θ

)
for data points xi that have been pre-

viously removed from the training set. Based on µ¬i and σ2
¬i one can derive explicit expressions

for (α, W
1
2 ), our parameters of interest.

αi ≈
∫

∂
∂ fi

P (yi| fi)N ( fi|µ¬i, σ2
¬i)d fi∫

P (yi| fi)N ( fi|µ¬i, σ2
¬i)d fi[

W−1
]

ii
≈ σ2

¬i

(
1

αi [Kα]i
− 1
)

(4.17)

In turn, the 2n parameters (µ¬i, σ2
¬i) can be expressed as a function of α, K and W

1
2 .

σ2
¬i = 1/

[(
K + W−1

)−1
]

ii
−
[
W−1

]
ii

µ¬i = [Kα]i − σ2
¬iαi (4.18)

As a result, a system (equations 4.17/4.18) of nonlinear equations in µ¬i and σ2
¬i has to be

solved by iteration. Each step involves a matrix inversion of cubic complexity. A faster “naïve”
variant updating only n parameters has also been proposed in Opper and Winther [2000] but
it does not lead to the same fixed point. As in the FV algorithm (section 4.7), a formal complex
transformation leads to a simplified version by fixing σ2

¬i = Kii, called (TAPnaive) in the sequel.
Finally, for prediction, the predictive posterior P ( f∗|x∗, y, X, θ) is approximated by a Gaus-

sian N ( f∗|µ∗, σ2
∗) at a test point x∗ based on the parameters (α, W

1
2 ) and according to equation

(4.10).
A fixed-point of the TAP mean-field equations is also a fixed-point of the EP algorithm

[Minka, 2001a]. This theoretical result was confirmed in our numerical simulations. However,
the EP algorithm is more practical and typically much faster. For this reason, we are not going
to treat the TAP method as an independent algorithm.

4.5 KL-divergence minimisation (KL)

In principle, we simply want to minimise a dissimilarity measure between the approximate
posterior Q (f|θ) = N (f|m, V) and the exact posterior P (f|y, X, θ). One quantity to minimise
is the KL-divergence

KL (P (f|y, X, θ) ‖ Q (f|θ)) =
∫

P (f|y, X, θ) ln
P (f|y, X, θ)

Q (f|θ) df.

Unfortunately, this expression is intractable. If instead, we measure the reverse KL-divergence,
we regain tractability

KL (Q (f|θ) ‖ P (f|y, X, θ)) =
∫
N (f|m, V) ln

N (f|m, V)

P (f|y, X, θ)
df =: KL(m, V).

A similar approach has been followed for regression with Laplace or Cauchy noise [Opper
and Archambeau, 2009]. Finally, we minimise the following objective (see appendix F.6) with
respect to the variables m and V. Constant terms have been dropped from the expression

KL(m, V)
c
= −

∫
N ( f )

[
n

∑
i=1

ln sig (
√

viiyi f + miyi)

]
d f − 1

2
ln |V|+ 1

2
m>K−1m+

1
2

tr
(

K−1V
)

.
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We refer to the first term of KL(m, V) as a(m, V) to keep the expressions short. We calculate first
derivatives and equate them with zero to obtain necessary conditions that have to be fulfilled
at a local optimum (m∗, V∗)

∂KL
∂m

=
∂a
∂m
−K−1m = 0 ⇒ K−1m =

∂a
∂m

= α

∂KL
∂V

=
∂a
∂V

+
1
2

V−1 − 1
2

K−1 = 0 ⇒ V =

(
K−1 − 2

∂a
∂V

)−1

=
(

K−1 − 2Λ
)−1

,

which defines Λ. If the approximate posterior is parametrised by (m, V), there are O(n2) free
variables. Once the necessary conditions for a local minimum are fulfilled (i.e. the derivatives
∂KL/∂m and ∂KL/∂V vanish), the problem can be re-parametrised in terms of (α, Λ). Since
Λ = ∂a/∂V is a diagonal matrix (see equations 2.16 and F.3), the optimum is characterised by
2n free parameters. This fact was pointed out by Manfred Opper (personal communication)
and mentioned in Seeger [1999, ch. 5.21, eq. 5.3]. Thus, a minimisation scheme based on
Newton iterations on the joint vector ξ := [α>, Λii]

> takes O(8 · n3) operations. Details about
the derivatives ∂KL/∂ξ and ∂2KL/∂ξ∂ξ> are provided in appendix F.3.

Posterior

Based on these local approximations, the approximate posterior can be written as

P (f|y, X, θ) ≈ N (f|m, V) = N
(

f|m,
(

K−1 + W
)−1

)
W = −2Λ

m = Kα

Marginal likelihood

Since the method inherently maximises a lower bound on the marginal likelihood, this bound
(equation 4.13) is used as approximation to the marginal likelihood.

4.6 Individual potential bounding (VB)

Individual non-Gaussian likelihood bounds [Gibbs and MacKay, 2000, Jaakkola and Jordan,
1996] lead to many desirable properties for log-concave super-Gaussian models as described
in chapter 3. The potential bounding approach can be seen as a variant of the KL method with
more constraints or equivalently as a further relaxation to ln ZKL (see 2.5.9). However, the con-
vexity results only hold true for a special parametrisation in terms of the effective variance γi
of the Gaussian approximation to the non-Gaussian likelihood P (yi| fi). We will first discuss a
more general parametrisation and show how to deal with the cumulative Gaussian likelihoods.
Then, we will add the respective expressions for the marginal likelihood using the analytically
convenient special case.

Bounds

In general, every Gaussian lower bound has three variational parameters ai, bi and ci

P (yi| fi) ≥ exp
(
ai f 2

i + biyi fi + ci
)

, ∀ fi ∈ R ∀i (4.19)

⇒ P (y|f) ≥ exp
(

f>Af + (b� y)> f + c>1
)
=: Q (y|f, A, b, c) , ∀f ∈ R,

where A = [ai]ii, b = [bi]i and c = [ci]i. It is clear, that ai, bi, ci are not independent. Fixing one of
them, more or less determines the others. Two possible parametrisations have been discussed
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in the literature: Gibbs and MacKay [2000] use ς 7→ (A, b, c), where ς is the position at which
the lower bound touches the likelihood and in Nickisch and Seeger [2009] we employ γ 7→
(A, b, c), where γ is the width of the lower bound. While the first parametrisation allows to
deal with the cumulative Gaussian, the second parametrisation leads to a convex optimisation
problem for the cumulative logistic likelihood. Table 4.1 summarises the parametrisation in
terms of the positions ς and the widths γ.

Name A b c tight at notes

Cumulative logistic −Λς
1
2 1 Λςς2 − 1

2 ς + ln siglogit(ς) f = ±ς λi(ςi) =
2siglogit(ςi)−1

4ςi

Cumulative Gaussian − 1
2 I ς + N (ς)

sigprobit(ς)

( ς
2 − b

)
� ς + ln

(
sigprobit(ς)

)
f = ς see appendix F.8

Width based −σ2 1
2 Γ−1 σ−2β� y − 1

2 [h(γi)]i σ = 1, see chapters 2/3

Table 4.1: Variational Bayes parametrisations

Posterior

Based on these two types of local bounds, the approximate posterior can be written as

P (f|y, X, θ) ≈ N (f|m, V) = N
(

f|m,
(

K−1 + W
)−1

)
W = −2Aς = Γ−1

m = V (y� bς) = Vβγ,

where we have expressed the posterior parameters directly as a function of the coefficients.
Finally, we deal with an approximate posterior Q (f|θ) = N (f|m, V) only depending on a
vector ς or γ of n variational parameters and a mapping ς, γ 7→ (m, V). In the KL method,
every combination of values m and W is allowed, in the VB method, m and V cannot be chosen
independently, since they have to be compatible with the bounding requirements. Therefore,
the variational posterior is more constrained than the general Gaussian posterior.

Marginal likelihood

This lower bound on the individual likelihoods induces a lower bound on the marginal likeli-
hood

Z =
∫

P (f|X)P (y|f)df ≥
∫

P (f|X)Q (y|f, A, b, c)df = ZVB.

Carrying out the Gaussian integral

ZVB =
∫
N (f|0, K) exp

(
f>Af + (b� y)> f + c>1

)
df

leads to (see appendix F.7)

ln ZVB = c>ς 1 +
1
2
(bς � y)>

(
K−1 − 2Aς

)−1
(bς � y)− 1

2
ln |I− 2AςK| (4.20)

= −1
2

h(γ) +
1
2

β>
(

K−1 + Γ−1
)−1

β +
1
2

ln |Γ| − 1
2

ln |K + Γ| ,

which can now be maximised with respect to ς or γ. In order to get an efficient algorithm, we
calculate the first and second derivatives ∂ ln ZVB/∂θ, ∂ ln ZVB/∂ς, ∂2 ln ZVB/∂ς∂ς> (appendix
F.1) and ∂ ln ZVB/∂γ, ∂2 ln ZVB/∂γ∂γ> (appendix F.2).

It turns out, that the approximation to the marginal likelihood (equation 4.20) is quite poor
for the cumulative Gaussian likelihood and the more general Jensen bound approach (equation
4.13) is tighter.
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4.7 Factorial variational method (FV)

Instead of approximating the posterior P (f|y, X, θ) by the closest Gaussian distribution, one
can use the closest factorial distribution Q (f|y, X, θ) = ∏i Q ( fi), also called ensemble learning
[Csató et al., 2000, Miskin, 2000] . Another kind of factorial approximation Q (f) = Q (f+)Q (f−)
– a posterior factorising over classes – is used in multi-class classification [Girolami and Rogers,
2006].

Posterior

As a result of the free-form Kullback-Leibler divergence KL (Q (f|y, X, θ) ‖ P (f|y, X, θ)) min-
imisation by equating its functional derivative δKL/δQ ( fi) with the zero function (equation
2.14 and appendix F.9), one finds the best approximation to be of the following form

Q ( fi) ∝ N
(

fi
∣∣µi, σ2

i
)

P (yi| fi)

µi = mi − σ2
i

[
K−1m

]
i
= [Kα]i − σ2

i αi

σ2
i =

[
K−1

]−1

ii

mi =
∫

fiQ ( fi)d fi. (4.21)

In fact, the best product distribution consists of a factorial Gaussian times the original likeli-
hood. The Gaussian has the same moments as the Leave-one-out prediction [Sundararajan and
Keerthi, 2001]. Since the posterior is factorial, the effective likelihood of the factorial approxi-
mation has an odd shape. It effectively has to annihilate the correlations in the prior, and these
correlations are usually what allows learning to happen in the first place. However, the best
fitting factorial is still able to ensure that the latent means have the right signs. Even though
all correlations are neglected, it is still possible that the model picks up the most important
structure, since the expectations are coupled. Of course, at test time, it is essential that corre-
lations are taken into account again using equation 4.10, as it would otherwise be impossible
to inject any knowledge into the predictive distribution. For predictions we use the Gaussian
N (f|m, Dg(v)) instead of Q (f). This is a further approximation, but it allows to stay inside the
Gaussian framework.

Parameters µi and mi are found by the following algorithm. Starting from m = 0, iterate
the following until convergence; (1) compute µi, (2) update mi by taking a step in the direction
towards mi as given by equation 4.21. Step sizes are adapted.

Marginal likelihood

Surprisingly, one can obtain a lower bound on the marginal likelihood [Csató et al., 2000]

ln Z ≥
n

∑
i=1

ln sig
(

yimi

σi

)
− 1

2
α>
(

K−Dg(
[
σ2

1 , . . . , σ2
n
]>

)
)

α− 1
2

ln |K|+
n

∑
i=1

ln σi.

4.8 Label regression method (LR)

Classification has also been treated using label regression or least squares classification [Rifkin
and Klautau, 2004]. In its simplest form, this method simply ignores the discreteness of the
class labels at the cost of not being able to provide proper probabilistic predictions. However,
we treat LR as a heuristic way of choosing α and W, which allows us to think of it as yet another
Gaussian approximation to the posterior allowing for valid predictions of class probabilities.
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Posterior

After inference, according to equation 4.10, the moments of the (Gaussian approximation to
the) posterior GP can be written as µ∗ = k>∗ α and σ2

∗ = k∗∗ − k>∗
(
K + W−1)−1 k∗. Fixing

W−1 = σ2
nI and α =

(
K + W−1

)−1 (
K + W−1

)
α =

(
K + W−1

)−1
y,

we obtain GP regression from data points xi ∈ X to real labels yi ∈ R with noise of variance
σ2

n as a special case. In regression, the posterior moments are given by µ∗ = k>∗
(
K + σ2

nI
)−1 y

and σ2
∗ = k∗∗ − k>∗

(
K + σ2

nI
)−1 k∗ [Rasmussen and Williams, 2006]. The arbitrary scale of

the discrete y can be absorbed by the hyperparameters. There is an additional parameter σn,
describing the width of the effective likelihood. In experiments, we selected σn ∈ [0.5, 2] to
maximise the log marginal likelihood.

Marginal likelihood

There are two ways of obtaining an estimate of the log marginal likelihood. One can simply
ignore the binary nature and use the regression marginal likelihood ln Zreg as proxy for ln Z –
an approach we only mention but do not use in the experiments

ln Zreg = −1
2

α>
(
K + σ2

nI
)

α− 1
2

ln
∣∣K + σ2

nI
∣∣− n

2
ln 2π.

Alternatively, the Jensen bound (4.12) yields a lower bound ln Z ≥ ln ZB – which seems more
in line with the classification scenario than ln Zreg.

4.9 Relations between the methods

All considered approximations can be separated into local and global methods. Local methods
exploit properties (such as derivatives) of the posterior at a special location only. Global meth-
ods minimise the KL-divergence KL(Q||P) =

∫
Q (f) ln Q (f) /P (f)df between the posterior

P (f) and a tractable family of distributions Q (f). Often this methodology is also referred to as
a variational algorithm. Table 4.2 visualises the relations between the various algorithms.

assumption relation conditions approx. posterior Q (f) name

Q (f) = N (f|m, V) → m = arg maxf P (f)
W = − ∂2 ln P(y|f)

∂f∂f>
N (f|m, (K−1+W)−1) LA

Q (f) = ∏i qi( fi) → δKL
δqi( fi)

≡ 0 ∏iN ( fi|µi, σ2
i )P(yi| fi) FV

↘ 〈
f d
i
〉

qi( fi)
=
〈

f d
i
〉

Q( fi)
N
(
f|m, (K−1+W)−1) EP

↗
Q (f) = N (f|m, V) → ∂KL

∂V,m = 0 N
(
f|m, (K−1+W)−1) KL

↘
P(yi| fi) ≥ N ( fi|µςi , σ2

ςi
) → ∂KL

∂ς∗
= 0 N

(
f|mς∗ , (K−1+Wς∗)

−1) VB

P(yi| fi) := N ( fi|yi, σ2
n) → m = (I+σ2

nK−1)−1y N (f|m, (K−1+σ−2
n I)−1) LR

Table 4.2: Relations between variational approximate inference algorithms
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The only local method considered is the LA approximation matching curvature at the poste-
rior mode. Common tractable distributions for global methods include factorial and Gaussian
distributions. They have their direct correspondent in the FV method and the KL method. In-
dividual likelihood bounds make the VB method a more constrained and easier-to-optimise
version of the KL method. Interestingly, EP can be seen in some sense as a hybrid version of FV
and KL, combining the advantages of both methods. Within the expectation consistence (EC)
framework of Opper and Winther [2005], EP can be thought of as an algorithm that implicitly
works with two distributions – a factorial and a Gaussian – having the same marginal moments〈

f d
i
〉
. By means of iterative updates, one keeps these expectations consistent and produces a

posterior approximation.
In the divergence measure and message passing framework of Minka [2005], EP is cast as a

message passing algorithm template: iterative minimisation of local divergences to a tractable
family of distributions yields a small global divergence. From that viewpoint, FV and KL are
considered as special cases with divergence measure KL(Q||P) combined with factorial and
Gaussian distributions.

There is also a link between local and global methods, namely from the KL to the LA
method. The necessary conditions for the LA method do hold on average for the KL method
[Opper and Archambeau, 2009].

Finally, LR neither qualifies as local nor global – it is a heuristic way of setting m and W.

4.10 Markov chain Monte Carlo (MCMC)

The only way of getting a handle on the ground truth for the moments Z, m and V is by ap-
plying sampling techniques. In the limit of long runs, they are guaranteed to get the right
answer. But in practise, these methods can be very slow, compared to analytic approxima-
tions discussed previously. MCMC runs are rather supposed to provide a gold standard for
comparison with the other methods.

It turns out to be most challenging to obtain reliable marginal likelihood estimates as it is
equivalent to solving the free energy problem in physics. We employ Annealed Importance
Sampling (AIS) and thermodynamic integration to yield the desired marginal likelihoods. In-
stead of starting annealing from the prior distribution, we propose to directly start from an
approximate posterior in order to speed up the sampling process.

Accurate estimates of the first and second moments can be obtained by sampling directly
from the (unnormalised) posterior using Hybrid Monte Carlo methods [Neal, 1993].

Thermodynamic integration

The goal is to calculate the marginal likelihood Z =
∫

P (y|f)P (f|X)df. AIS [Neal, 1993, 2001]
works with intermediate quantities Zt :=

∫
P (y|f)τ(t)

P (f|X)df. Here, τ : N ⊃ [0, T] →
[0, 1] ⊂ R denotes an inverse temperature schedule with the properties τ(0) = 0, τ(T) = 1 and
τ(t + 1) ≥ τ(t) leading to Z0 =

∫
P (f|X)df = 1 and ZT = Z.

On the other hand, we have Z = ZT/Z0 = ∏T
t=1 Zt/Zt−1 – an expanded fraction. Each

factor Zt/Zt−1 can be approximated by importance sampling with samples fs from the “inter-
mediate posterior” P (f|y, X, t− 1) := P (y|f)τ(t−1)

P (f|X) /Zt−1 at time t.

Zt

Zt−1
=

∫
P (y|f)τ(t)

P (f|X)df
Zt−1

=
∫

P (y|f)τ(t)

P (y|f)τ(t−1)

P (y|f)τ(t−1)
P (f|X)

Zt−1
df

=
∫

P (y|f)∆τ(t)
P (f|y, X, t− 1)df

≈ 1
S

S

∑
s=1

P (y|fs)
∆τ(t) , fs ∼ P (f|y, X, t− 1) (4.22)
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This works fine for small temperature changes ∆τ(t) := τ(t) − τ(t − 1). In the limit, we
smoothly interpolate between P (y|f)0

P (f|X) and P (y|f)1
P (f|X), i.e. we start by sampling

from the prior and finally approach the posterior. Note that sampling is algorithmically possi-
ble even though the distribution is only known up to a constant factor.

Improvement using an approximate posterior

In practise, the posterior can be quite different from the prior. That means individual fractions
Zt/Zt−1 may be difficult to estimate. One can make these fractions more similar by increasing
the number of steps T or by “starting” from a distribution close to the posterior rather than
from the prior. Let Q (f) = N (f|m, V) ≈ P (f|y, X, T) = P (y|f)P (f|X) /ZT denote an approx-
imation to the posterior. Setting N (f|m, V) = Q (y|f)P (f|X), one can calculate the effective
likelihood Q (y|f) by division (see appendix F.5).

For the integration we use Zt =
∫

P (y|f)τ(t)
Q (y|f)1−τ(t)

P (f|X)df, where the Gaussian in-
tegral Z0 =

∫
Q (y|f)P (f|X)df can be computed analytically. Again, each factor Zt

Zt−1
of the

expanded fraction can be approximated by importance sampling from the modified intermedi-
ate posterior

P (f|y, X, t− 1) = P (y|f)τ(t−1)
Q (y|f)1−τ(t−1)

P (f|X) /Zt−1

=

[
P (y|f)
Q (y|f)

]τ(t−1)

Q (y|f)P (f|X) /Zt−1.

Zt

Zt−1
=

∫
P (y|f)τ(t)

Q (y|f)1−τ(t)
P (f|X)df

Zt−1

=
∫

P (y|f)τ(t)
Q (y|f)1−τ(t)

P (y|f)τ(t−1)
Q (y|f)1−τ(t−1)

P (y|f)τ(t−1)
Q (y|f)1−τ(t−1)

P (f|X)
Zt−1

df

=
∫ [

P (y|f)
Q (y|f)

]∆τ(t)

P (f|y, X, t− 1)df

≈ 1
S

S

∑
s=1

[
P (y|fs)

Q (y|fs)

]∆τ(t)

, fs ∼ P (f|y, X, t− 1)

The choice of Q (f) to be a good approximation to the true posterior makes the fraction
P (y|f) /Q (y|f) as constant as possible, which in turn reduces the error due to the finite step
size in thermodynamical integration.

Algorithm

If only one sample ft is used per temperature τ(t), the value of the entire fraction is obtained as

ln
Zt

Zt−1
= ∆τ(t) [ln P (y|ft)− ln Q (y|ft)]

giving rise to the full estimate

ln Z ≈
T

∑
t=1

ln
Zt

Zt−1
= ln ZQ +

T

∑
t=1

∆τ(t)
[

ln P (y|ft) +
1
2
(ft − m̃)>W (ft − m̃)

]
for a single run r. The finite temperature change bias can be removed by combining results Zr
from R different runs by their arithmetic mean 1

R ∑r Zr [Neal, 2001].

ln Z = ln
∫

P (y|f)P (f|X)df ≈ ln

(
1
R

R

∑
r=1

Zr

)
Finally, the only primitive needed to obtain MCMC estimates of Z, m and V is an efficient

sampler for the “intermediate” posterior P (f|y, X, t− 1). We use Hybrid Monte Carlo sampling
[Neal, 1993].
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Results

If the posterior is very close to the prior (as in regimes 7-9 of figure 4.3), it does not make
a difference, where we start from. However, if the posterior can be well approximated by a
Gaussian (regimes 4-6), but is sufficiently different from the prior, then the method decreases
variance and consequently improves runtimes of AIS. Different approximation methods lead
also to differences in the improvement. Namely, the Laplace approximation performs worse
than the approximation found by expectation propagation because Laplace’s method approxi-
mates around the mode, which can be far away from the mean.

However, for our evaluations of the approximations to the marginal likelihood, we started
the algorithm from the prior. Otherwise, one might be worried of biasing the MCMC simula-
tion towards the initial distribution in cases of the chain failing to mix properly.

4.11 Implementation

As an extension to their book, Rasmussen and Williams [2006] made the GPML (Gaussian pro-
cesses for machine learning) code publicly available4. The toolbox contained code for Gaussian
regression and approximate classification using EP and LA. About a year later, the code was
refactored and improved so that inference and model specification were kept apart5. In ad-
dition to EP and LA named approxEP.m and approxLA.m in the code, implementations of all
of the approximation methods mentioned in this chapter can be downloaded and used6 as an
extension to the GPML code:

• approxKL.m – Kullback-Leibler, section 4.5,

• approxVB.m – individual variational bounds, section 4.6,

• approxFV.m – factorial variational, section 4.7 and

• approxLR.m – label regression 4.8.

Sparse and/or online approximation methods as introduced in section 4.2.2 include

• approxIVM.m – informative vector machine,

• approxOLEP.m – online EP and

• approxSO.m – sparse online approximation.

For mainly educational reasons, we also provide some (equivalent) variants of EP from section
4.4.1 like

• approxEC.m – expectation consistent inference,

• approxTAP.m – ADATAP and

• approxTAPnaive.m – naive ADATAP.

The release 3.1 of the GPML code as described in section 4.11.1 [Rasmussen and Nickisch,
2010], is available as mloss.org project7 or from the Gaussian process website8. The new im-
plementation is completely generic, with simple interfaces for an extended set of covariance
and likelihood functions. We also support arbitrary mean functions and provide full compati-
bilty with GNU Octave. Much energy was spent to properly disentangle covariance, likelihood
and mean hyperparameters. Again, special care has been taken to avoid numerical problems,
e.g. safe likelihood evaluations for extreme inputs and stable matrix operations as described in
the following.

4http://www.gaussianprocess.org/gpml/code/matlab/release/gpml-matlab-v1.3-2006-09-08.tar.gz
5http://www.gaussianprocess.org/gpml/code/matlab/release/gpml-matlab-v2.0-2007-06-25.tar.gz
6The extension is available at http://www.kyb.mpg.de/~hn/approxXX.tar.gz.
7http://mloss.org/software/view/263/
8The current version can be obtained from http://www.gaussianprocess.org/gpml/code/matlab/doc/.

http://www.gaussianprocess.org/gpml/code/matlab/release/gpml-matlab-v1.3-2006-09-08.tar.gz
http://www.gaussianprocess.org/gpml/code/matlab/release/gpml-matlab-v2.0-2007-06-25.tar.gz
http://www.kyb.mpg.de/~hn/approxXX.tar.gz
http://mloss.org/software/view/263/
http://www.gaussianprocess.org/gpml/code/matlab/doc/
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Stable matrix operations

More concretely, to properly handle situations, where K is close to singular, we use the well-
conditioned matrix B9 and its Cholesky decomposition to calculate V =

(
K−1 + W

)−1 and

k>∗ Ck∗ = k>∗
(
K + W−1)−1 k∗. The case of W10 having negative components, can be handled

by using the (slower) LU-decomposition of the non-symmetric (but well-conditioned) matrix
A instead as summarised in the following table.

Well conditioned matrix C =
(
K + W−1)−1 V =

(
K−1 + W

)−1 ln |KW + I|
B = W

1
2 KW

1
2 + I = LL> W

1
2 B−1W

1
2 = W

1
2 L−>L−1W

1
2 K−KCK 2 · 1> ln(dg(L))

A = KW + I = LU WA−1 = WU−1L−1 K−KCK 1> ln |dg(U)|

Table 4.3: Numerically stable matrix operations in GP classification

The posterior mean m is represented in terms of α = K−1m to avoid multiplications with
K−1 and facilitate predictions. As a result, our code shows a high level of robustness along the
full spectrum of possible hyperparameters. The KL method uses Gaussian-Hermite quadra-
ture; we did not notice problems stemming therefrom. The FV and TAP methods work very
reliably, although we had to add a small (10−6) ridge for FV to regularise K.

Large scale computations

The focus of the toolbox is on approximate inference using dense matrix algebra. We currently
do not support covariance matrix approximation techniques to deal with large numbers of
training examples n. Hence, all discussed inference algorithms hinge on K being not too big
since matrix decompositions have complexityO(n³). If the dataset size n grows beyond 5 · 103,
exact matrix computations become prohibitive rather quickly. By means of an approximation
to the covariance matrix

K ≈ K̂ := VRV> + D, V ∈ Rn×r, R ∈ Rr×r, D = dg(d),

which has to be computed before the inference procedure, we can reduce the computational
cost so that LA and VB become scalable. Examples include the Nyström approximation [Smola
and Schölkopf, 2000, Williams and Seeger, 2001] and the incomplete Cholesky decomposition
[Fine and Scheinberg, 2001]. Matrix vector multiplications (MVMs) with K̂ costO(r · n) instead
of O(n²) and MVMs with K̂−1 can be computed using the matrix inversion lemma

K−1 ≈ K̂−1 = D−1 −D−1V
(

R−1 −V>D−1V
)−1

V>D−1

at a cost of O(r · n), as well.

4.11.1 The gpml toolbox

We provide a stable and modular implementation verified by test cases and unit tests that
contains a user and a technical documentation11. The code is fully compatible to Matlab 7.x12

and GNU Octave 3.2.x13. A Gaussian process model requires the specification of a Gaussian
process prior through a mean and covariance function and as well as a likelihood. Model fitting
and prediction depends on an approximate inference algorithm computing Q(f) and Q( f∗) as
summarised in the following table.

The GPML toolboox contains exactly these objects: model fitting using the marginal likeli-
hood gradient ∂L

∂θ and prediction work in a fully generic way, once the model is specified. In
the following, we list some of the implemented objects.

9All eigenvalues λ of B satisfy 1 ≤ λ ≤ 1 + n
4 maxij Kij, thus B−1 and |B| can be safely computed.

10This happens for non-log-concave likelihoods like the Student’s t likelihood. Formally, negative values in W
correspond to negative variances. Although negative variances do not have a probabilistic meaning, they still
allow to locally imitate the non-Gaussian likelihoods so that the approximate posterior is most similar to the exact
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1) GP f ∼ GP
(
mφ, kψ

)
2) Likelihood 3) Approximate inference 4) Fitting θ = (φ, ψ, ρ)

Pφ,ψ(f) ∼ N (f|mφ, Kψ) ∏n
i=1 Pρ(yi| fi) Q(f) ≈ P(f|y) ∝ Pφ,ψ(f)Pρ(y|f) θ? = arg maxθ L(θ)

a) mean mφ(x) L(θ) ≈
∫

Pφ,ψ(f)Pρ(y|f)df 5) Prediction Q(y∗)
b) covariance kψ(x, x′)

Table 4.4: GPML toolbox building blocks

1a) Mean functions

In the GPML toolbox a mean function needs to implement evaluation m = mφ(X) and first
derivatives mi =

∂
∂φi

mφ(X). We offer simple and composite mean functions.

• simple functions: zero m(x) = 0, const m(x) = c, linear m(x) = a>x

• composite functions: sum m(x) = ∑j mj(x), prod m(x) = ∏j mj(x),
pow m(x) = m1(x)d

This modular specification allows to work with affine mean functions m(x) = c + a>x or poly-
nomials m(x) = (c + a>x)2.

1b) Covariance functions

Similarly to the mean functions, we provide a whole algebra of covariance functions. Again,
the interface is simple since only evaluation of the full covariance matrix K = kψ(X) and its
derivatives Ki = ∂

∂ψi
kψ(X) and cross terms k∗ = kψ(X, x∗) and k∗∗ = kψ(x∗, x∗) for predic-

tion are required. Besides a long list of simple covariance functions, we also offer a variety of
composite covariance functions.

• simple functions: linear, constant, ridge, Matérn, squared exponential,

polynomial, periodic, MKL, neural network, finite support

• composite functions

– sum, prod k(x, x′) = ∑j k j(x, x′), k(x, x′) = ∏j k j(x, x′)

– masked k(xI , x′I), masking index I ⊆ [1, 2, .., D], x ∈ RD

– scaling k(x, x) = σ2
f k0(x, x′)

– additive k(x, x′) = ∑|I|=d∈D k(xI , x′I), index degree set D

Both the mean and the covariance functions are easily extensible.

2) Likelihoods

The GPML toolbox approximate inference engine does not explicitly distinguish between clas-
sification and regression: for any choice of the likelihood Pρ(yi| fi), the toolbox uses the same
code in the inference step. The following table enumerates all (currently) implemented likeli-
hood functions and their respective parameter set ρ. See figure 2.2 for a graphical illustration
and the expressions for Pρ(yi| fi).

posterior.
11http://www.gaussianprocess.org/gpml/code/
12The MathWorks, http://www.mathworks.com/
13The Free Software Foundation, http://www.gnu.org/software/octave/

http://www.gaussianprocess.org/gpml/code/
http://www.mathworks.com/
http://www.gnu.org/software/octave/
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Pρ(yi| fi) regression yi ∈ R classification yi ∈ {±1}
name Gaussian logistic Laplacian Student’s t cum. Gaussian cum. logistic
ρ = {ln σ} {ln(ν− 1), ln σ} ∅

Table 4.5: Likelihood functions implemented in the GPML toolbox

3) Approximate inference methods

In addition to exact inference (only possible for Gaussian likelihood), we have three major
approximate inference methods implemented in the toolbox: expectation propagation (section
4.4 and chapter 2.5.10), Laplace approximation (section 4.3 and chapter 2.5.6) and variational
Bayes (section 4.6 and chapter 2.5.9). The following table lists all possible combinations of
likelihood and inference algorithm. Note that any choice of mean and covariance function is
allowed.

likelihood \ inference exact EP Laplace variational Bayes
Gaussian X X X
logistic X X X
Laplacian X X
Student’s t X X
cumulative Gaussian X X
cumulative logistic X X X

Table 4.6: Likelihood↔ inference compatibility in the GPML toolbox

Expectation propagation for Student’s t likelihoods is inherently unstable due to non-log-
concavity. The Laplace approximation for Laplace likelihoods is not sensible because at the
mode the curvature and the gradient can be undefined due to the non-differentiable peak of
the Laplace distribution. Special care has been taken for the non-convex optimisation problem
imposed by the combination Student’s t likelihood and Laplace approximation. Finally, the
(convex) lower bounding approach by Gaussian potentials of variable width is problematic for
Gaussian and cumulative Gaussian likelihoods because they admit only certain widths.

Code example

Due to the modular structure of the code, specification of a full GP model and model fitting can
be done in less than ten lines of code as illustrated by the following example.

1 [xtr ,xte ,ytr ,yte] = read_data; % train and test data

2
3 % 1) SET UP THE GP

4 cov = {'covSEiso '}; sf = 1; ell = 0.7; % squared exp. covariance

5 mean = {'meanSum ',{'meanLinear ','meanConst '}}; a = 2; b = 1;% a*x+b

6 lik = 'likLaplace '; sn = 0.2; % sparse Laplace likelihood

7 hyp.mean = [a;b]; hyp.cov = log([ell;sf]); hyp.lik = log(sn);% hyp

8 inf = 'infEP'; % inference method is expectation propagation

9
10 % 2) LEARN , i.e. MAX. MARGINAL LIKELIHOOD w.r.t. hyp

11 Ncg = 50; % number of conjugate gradient steps for optimisation

12 hyp = minimize(hyp ,'gp', -Ncg , inf , mean , cov , lik , xtr , ytr);

13
14 % 3) PREDICT

15 [ymu , ys2] = gp(hyp , inf , mean , cov , lik , xtr , ytr , xte)

16
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17 K = feval(cov{:}, hyp.cov , xtr); % evaluate covariance matrix

18 m = feval(mean{:}, hyp.mean , xtr); % evaluate mean vector

19 lp = feval(lik , hyp.lik , ytr , ftr); % evaluate log likelihood

4.12 Experiments

The purpose of our experiments is to illustrate the strengths and weaknesses of the different
approximation methods. First of all, the quality of the approximation itself in terms of posterior
moments Z, m and V is studied. At a second level, building on the “low-level” features, we
compare predictive performance in terms of the predictive probability p∗ given by (equations
4.8 and 4.10)

p∗ := P (y∗ = 1|x∗, y, X, θ) ≈
∫

sig ( f∗)N
(

f∗|µ∗, σ2
∗
)

d f∗. (4.23)

On a third level, we assess higher order properties such as the information score, describing
how much information the model managed to extract about the target labels, and the error rate
– a binary measure of whether a test input is assigned the right class. Uncertainty predictions
provided by the model are not captured by the error rate.

Accurate marginal likelihood estimates Z are a key to hyperparameter learning. In that
respect, Z can be seen as a high-level feature and as the “zeroth” posterior moment at the same
time.

A summary of the results is provided by table 4.7.

Datasets

One main goal is to study the general behaviour of approximate GP classification. Our results
for the different approximation methods are not specific to a particular dataset but apply to
a wide range of application domains. This is reflected by the choice of our reference datasets
summarised in table 4.8, widely used in the machine learning literature. We do not include the
full experiments on all datasets. However, we have verified that the same qualitative conclu-
sions hold for all the datasets considered.

Results

In the following, we report our experimental results covering posterior moments and predic-
tive performance. Findings for all 5 methods are provided to make the methods as comparable
as possible.

4.12.0.1 Mean m and (co)variance V

The posterior process, or equivalently the posterior distribution over the latent values f, is
determined by its location parameter m and its width parameter V. In that respect, these two
low-level quantities are the basis for all further calculations. In general, one can say that the
methods show significant differences in the case of highly non-Gaussian posteriors (regimes
1-5 of figure 4.3). Even in the two-dimensional toy example of figures 4.4 and 4.5, significant
differences are apparent. The means are inaccurate for LA and VB; whereas the variances
are somewhat underestimated by LA and KL and severely so by VB. Marginal means m and
variances dg(V) for USPS 3 vs. 5 are shown in figure 4.6; an exemplary marginal is pictured
in figure 4.7 for all approximate methods and the MCMC estimate. Along the same lines, a
close-to-Gaussian posterior is illustrated in figure 4.8. We chose the hyperparameters for the
non-Gaussian case of figure 4.6 to maximise the EP marginal likelihood (see figure 4.9), whereas
the hyperparameters of figure 4.8 were selected to yield a posterior that is almost Gaussian but
still has reasonable predictive performance.
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(a) Training marginals
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(b) Test marginals

Figure 4.6: Marginals of USPS 3 vs. 5 for a highly non-Gaussian posterior
Each row consists of five plots showing MCMC ground truth on the x-axis and LA, EP, VB,
KL and FV on the y-axis. Based on the cumulative logistic likelihood function and the squared
exponential covariance function with parameters ln ` = 2.25 and ln σf = 4.25 we plot the
marginal means, standard deviations and resulting predictive probabilities in rows 1-3. We are
working in regime 2 of figure 4.3 that means the posterior is highly non-Gaussian. The upper
part shows marginals of training points and the lower part shows test point marginals.
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LA EP* VB
logit|probit

KL FV MCMC

idea quadratic
expansion
around the

mode

marginal
moment
matching

lower
bound on

indiv.
likelihoods

KL minim.,
average w.r.t.
wrong Q (f)

best
free-form
factorial

sampling,
thermo-
dynamic

integration

algorithm Newton
steps

iterative
matching

Newton
steps

Newton steps fixed-point
iteration

Hybrid MC,
AIS

complexity O(n3) O(n3) O(n3) O(8n3) O(n3) O(n3)

speed very fast fast fast slow very fast very slow

running time 1 10 8 150 4 >500
likelihood
properties

1st-3rd log.
derivative

N -integrals lower
bound

simple
evaluation

N -integrals 1st log
derivative

evidence Z – ≈ – – – – – – =

mean m – – ≈ ++| – – + – =

covariance V – ≈ – – – – – =

information I – ≈ ≈| – ≈ – =

PRO speed practical
accuracy

principled
method

speed theoretical
accuracy

CON mean 6=mode,
low info I

speed strong over-
confidence

overconfidence factorising
approxima-

tion

very slow

Table 4.7: Feature summary of the considered algorithms
For each of the six algorithms under consideration, the major properties are listed. The basic
idea of the method along with its computational algorithm and complexity is summarised, the
requirements to the likelihood functions are given, the accuracy of evidence and moment es-
timates as well as information is outlined and some striking advantages and drawbacks are
compared. Six relations characterise accuracy: – – – extreme underestimation, – – heavy under-
estimation, – underestimation, = ground truth, ≈ good approximation, + overestimation and
++ heavy overestimation.
Running times were calculated by running each algorithm for 9 different hyperparameter
regimes and both likelihoods on all datasets. An average running time per dataset was cal-
culated for each method and scaled to yield 1 for LA. In the table, the average of these numbers
is shown. We are well aware of the fact, that these numbers also depend on our Matlab imple-
mentations and choices of convergence thresholds.

The LA method has the principled weakness of expanding around the mode. In high-
dimensional spaces, the mode can be very far away from the mean [Kuss and Rasmussen, 2005].
The absolute value of the mean is strongly underestimated. Furthermore, the posterior is highly
curved at its mode, which leads to an underestimated variance, too. These effects can be seen
in the first column of figures 4.6 and 4.7, although in the close-to-Gaussian regime LA works
well, figure 4.8. For large latent function scales σ2

f , in the limit σ2
f → ∞, the likelihood becomes

a step function, the mode approaches the origin and the curvature at the mode becomes larger.
Thus the approximate posterior as found by LA becomes a zero-mean Gaussian which is much
too narrow.

The EP method almost perfectly agrees with the MCMC estimates, second column of fig-
ure 4.6. That means, iterative matching of approximate marginal moments leads to accurate
marginal moments of the posterior.

The KL method minimises the KL-divergence KL (Q (f) ‖ P (f)) =
∫

Q (f) ln Q(f)
P(f)df with

the average taken to the approximate distribution Q (f). The method is zero-forcing, i.e. in
regions where P (f) is very small, Q (f) has to be very small as well. In the limit that means
P (f) = 0 ⇒ Q (f) = 0. Thus, the support of Q (f) is smaller than the support of P (f) and
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Dataset ntrain ntest d Brief description of problem domain
Breast 300 383 9 Breast cancer14

Crabs 100 100 6 Sex of Leptograpsus crabs15

Ionosphere 200 151 34 Classification of radar returns from the ionosphere16

Pima 350 418 8 Diabetes in Pima Indians17

Sonar 108 100 60 Sonar signals bounced by a metal or rock cylinder18

USPS 3 vs. 5 767 773 256 Binary sub-problem of the USPS handwritten digit dataset19

Table 4.8: Dimensionality of the considered datasets
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Figure 4.7: Marginals of USPS 3 vs. 5 for digit #93
Posterior marginals for one special training point from figure 4.6 is shown. Ground truth
in terms of true marginal and best Gaussian marginal (matching the moments of the true
marginal) are plotted in grey, Gaussian approximations are visualised as lines. For multivariate
GaussiansN (m, V), the i-th marginal is given byN ([m]i, [V]ii). Thus, the mode mi of marginal
i coincides with the i-th coordinate of the mode of the joint [m]i. This relation does not hold
for general skewed distribution. Therefore, the marginal given by the Laplace approximation
is not centred at the mode of the true marginal.
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Training ≈ Test marginals
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Figure 4.8: Marginals of USPS 3 vs. 5 for a close-to-Gaussian posterior
Using the squared exponential covariance and the cumulative logistic likelihood function with
parameters ln ` = 3 and ln σf = 0.5, we plot the marginal means, standard deviations and
resulting predictive probabilities in rows 1-3. Only the quantities for the trainingset are shown,
because the test set results are very similar. We are working in regime 8 of figure 4.3 that means
the posterior is of rather Gaussian shape. Each row consists of five plots showing MCMC
ground truth on the x-axis and LA, EP, VB, KL and FV on the y-axis.

hence the variance is underestimated. Typically, the posterior has a long tail away from zero as
seen in figure 4.3 regimes 1-5. The zero forcing property shifts the mean of the approximation
away from the origin, which results in a slightly overestimated mean, fourth column of figure
4.6.

Finally, the VB method can be seen as a more constrained version of the KL method with de-
teriorated approximation properties. The variance underestimation and mean overestimation
is magnified, third column of figure 4.6. Due to the required lower bounding property of each
individual likelihood term, the approximate posterior has to obey severe restrictions. Espe-
cially, the lower bound to the cumulative Gaussian cannot adjust its width since the asymptotic
behaviour does not depend on the variational parameter (equation 4.19).

The FV method has a special role because it does not lead to a Gaussian approximation to
the posterior but to the closest (in terms of KL-divergence) factorial distribution. If the prior
is quite isotropic (regimes 1, 4 and 7 of figure 4.3), the factorial approximation provides a rea-
sonable approximation. If the latent function values are correlated, the approximation fails.
Because of the zero forcing property, mentioned in the discussion of the KL method, both the
means and the variances are underestimated. Since a factorial distribution cannot capture cor-
relations, the effect can be severe. It is worth mentioning that there is no difference whether
the posterior is close to a Gaussian or not. In that respect, the FV method complements the LA
method, which has difficulties in regimes 1, 2 and 4 of figure 4.3.
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Figure 4.9: Evidence and classification performance for LA, EP, KL & VB on USPS 3 vs. 5
The length scale ` and the latent scale σf determine the working regime (1-9) of the Gaussian
Process as drafted in figure 4.3. We use the cumulative logistic likelihood and the squared
exponential covariance function to classify handwritten digits. The four panels illustrate the
model performance in terms of evidence, information and classification errors over the space
of hyperparameters (`, σf ). For better visibility we choose a logarithmic scale of the axes. Panel
a) shows the inherent evidence approximation of the four methods and panel b) contains the
Jensen lower bound (equation 4.13) on the evidence used in KL method. Both panels share
the same contour levels for all four methods. Note that for the VB method, the general lower
bound is a better evidence estimate than the bound provided by the method itself. Panel c) and
d) show the information score and the number of misclassifications.
One can read-off the divergence between posterior and approximation by recalling
KL(Q||P) = ln Z − ln ZKL from equation 4.14 and assuming ln ZEP ≈ ln Z. In the figure this
corresponds to subtracting subplots b, LA-VB) from subplots a, EP). Obviously, the divergence
vanishes for close-to-Gaussian posteriors (regimes 3, 5-6, 7-9).
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Figure 4.10: Evidence and classification performance for FV on USPS 3 vs. 5
The plots are a supplement to figure 4.9 making the factorial variational method comparable,
even though we use the cumulative Gaussian likelihood. The levels of the contour lines for the
information score and the number of misclassifications are the same as in figure 4.9. For the
marginal likelihood other contours are shown, since it has significantly different values.
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(b) Lower bound on evidence
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Figure 4.11: Evidence and classification performance for LA, EP, KL & VB on sonar
We show the same quantities as in figure 4.9, only for the Sonar Mines versus Rocks dataset
and using the cumulative Gaussian likelihood function.
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4.12.0.2 Predictive probability p∗ and information score I

Low-level features like posterior moments are not a goal per se, they are only needed for the
purpose of calculating predictive probabilities. figures 4.4 and 4.6 show predictive probabilities
in the last row.

In principle, a bad approximation in terms of posterior moments can still provide reason-
able predictions. Consider the predictive probability from equation 4.23 using a cumulative
Gaussian likelihood

p∗ =
∫

sigprobit( f∗)N ( f∗|µ∗, σ2
∗)d f∗ = sigprobit(µ∗/

√
1 + σ2∗).

It is easy to see that the predictive probability p∗ is constant if µ∗/
√

1 + σ2∗ is constant. That
means, moving mean µ∗ and standard deviation σ∗ along the hyperbolic curve µ2

∗/C2− σ2
∗ = 1,

while keeping the sign of µ∗ fixed, does not affect the probabilistic prediction. In the limit of
large µ∗ and large σ∗, rescaling does not change the prediction.

Summarising all predictive probabilities pi we consider the scaled information score I. As
a baseline model we use the best model ignoring the inputs xi. This model simply returns
predictions matching the class frequencies of the training set.

B = − ∑
y={+1,−1}

ny
test

n+1
test + n−1

test
log2

ny
train

n+1
train + n−1

train

≤ 1[bit]

We take the difference between the baseline B (entropy) and the average negative log predictive
probabilities log2 P (y∗|x∗, y, X) to obtain the information score

I = B +
1

2ntest

ntest

∑
i=1

(1 + yi) log2 (pi) + (1− yi) log2 (1− pi) ,

which is 1[bit] for perfect (and confident) prediction and 0[bit] for random guessing (for equiprob-
able classes). Figures 4.9c, 4.10(middle) and 4.11c contain information scores for 5 different
approximation methods on two different datasets as a function of the hyperparameters of the
covariance function. According to the EP and KL plots (most prominently in figure 4.11c), there
are two strategies for a model to achieve good predictive performance:

• Find a good length scale ` (e.g. ln ` ≈ 2) and choose a latent function scale σf above some
threshold (e.g. ln σf > 3).

• Start from a good set of hyperparameters (e.g. ln ` ≈ 2, ln σf ≈ 2) and compensate a
harder cutting likelihood (σ2

f ↑) by making the data points more similar to each other
(`2 ↑).

The LA method heavily underestimates the marginal means in the non-Gaussian regime (see
regimes 1-5 of figure 4.3). As a consequence, the predictive probabilities are strongly under-
confident in the non-Gaussian regime, first column of figure 4.6. The information score’s value
is too small in the non-Gaussian regime, figures 4.9c and 4.11c.

Since the EP algorithm yields marginal moments very close to the MCMC estimates (second
column of figure 4.6), its predictive probabilities and information score is consequently also
very accurate, figures 4.9c and 4.11c. The plots corresponding to EP can be seen as the quasi
gold standard [Kuss and Rasmussen, 2005, figures 4 and 5].

The KL method slightly underestimates the variance and slightly overestimates the mean,
which leads to slightly overconfident predictions, fourth column of figure 4.6. Overconfidence,
in general, leads to a degradation of the information score, however in this example, the infor-
mation score is very close to the EP values and at the peak it is even slightly (0.01[bit]) higher,
figures 4.9c and 4.11c.
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The VB method, again, has the same problems as the KL method only amplified. The pre-
dictions are overconfident, third column of figure 4.6. Consequently, the information measured
score in the non-Gaussian regime is too small. The cumulative logistic likelihood function (fig-
ure 4.9c) yields much better results than the cumulative Gaussian likelihood function (figure
4.11c).

Finally, as the FV method is accurate if the prior is isotropic, predictive probabilities and
information scores are very high in regimes 1, 4 and 7 of figure 4.3. For correlated priors,
the FV method achieves only low information scores, figure 4.10(middle). The method seems
to benefit from the “hyperbolic scaling invariance” of the predictive probabilities mentioned
earlier in that section because both the mean and the variance are strongly underestimated.

4.12.0.3 Number of errors E

If there is only interest in the actual class and not in the associated confidence level, one can
simply measure the number of misclassifications. Results for 5 approximation methods and 2
datasets are shown in figures 4.9d, 4.10(right) and 4.11d.

Interestingly, all four Gaussian approximation have very similar error rates. The reason
is mainly due to the fact that all methods manage to compute the right sign of the marginal
mean. Only the FV method with cumulative Gaussian likelihood seems a bit problematic, even
though the difference is only very small. Small error rates do not imply high information scores,
it is rather the other way round. In figure 4.9d at ln ` = 2 and ln σf = 4 only 16 errors are made
by the LA method while the information score (figure 4.9c) is only of 0.25[bits].

Even the FV method yields very accurate classes, having only small error rates.

4.12.0.4 Marginal likelihood Z

Agreement of model and data is typically measured by the marginal likelihood Z. Hyperpa-
rameters can conveniently be optimised using Z not least because the gradient ∂ ln Z

∂θ can be
analytically and efficiently computed for all methods. Formally, the marginal likelihood is the
volume of the product of prior and likelihood. In classification, the likelihood is a product
of sigmoid functions (figure 4.3), so that only the orthant {f|f� y ≥ 0 ∈ Rn} contains values
P (f|y) ≥ 1

2 . In principle, evidences are bounded by ln Z ≤ 0, where ln Z = 0 corresponds to
a perfect model. As pointed out in section 4.2.0.1, the marginal likelihood for a model ignor-
ing the data and having equiprobable targets has the value ln Z = −n ln 2, which serves as a
baseline.

Evidences provided by LA, EP and VB for two datasets are shown in figures 4.9a, 4.10(left)
and 4.11a. As the Jensen bound can be applied to any Gaussian approximation of the posterior,
we also report it in figures 4.9b and 4.11b.

The LA method strongly underestimates the evidence in the non-Gaussian regime, because
it is forced to centre its approximation at the mode, figures 4.9a and 4.11a. Nevertheless, there
is a good agreement between the value of the marginal likelihood and the corresponding infor-
mation score. The Jensen lower bound is not tight for the LA approximation, figures 4.9b and
4.11b.

The EP method yields the highest values among all other methods. As described in section
4.2.0.2, for high latent function scales σ2

f , the model becomes effectively independent of σ2
f . This

behaviour is only to be seen for the EP method, figures 4.9a and 4.11a. Again, the Jensen bound
is not tight for the EP method, figures 4.9b and 4.11b. The difference between EP and MCMC
marginal likelihood estimate is vanishingly small [Kuss and Rasmussen, 2005, figures 4 and 5].

The KL method directly uses the Jensen bound (equation 4.12), which can only be tight for
Gaussian posterior distributions. If the posterior is very skew, the bound inherently underes-
timates the marginal likelihood. Therefore, figures 4.9a and 4.9b and figures 4.11a and 4.11b
show the same values. The disagreement between information score and marginal likelihood
makes hyperparameter selection based on the KL method problematic.
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The VB method’s lower bound on the evidence turns out to be very loose, figures 4.9a and
4.11a. Theoretically, it cannot be better than the more general Jensen bound due to the addi-
tional constraints imposed by the individual bound on each likelihood factor, figures 4.9b and
4.11b. In practise, one uses the Jensen bound for hyperparameter selection. Again, the maxi-
mum of the bound to the evidence is not very helpful for finding regions of high information
score.

Finally, the FV method only yields a poor approximation to the marginal likelihood due
to the factorial approximation, figure 4.10. The more isotropic the model gets (small `), the
tighter is the bound. For strongly correlated priors (large `) the evidence drops even below the
baseline ln Z = −n ln 2. Thus, the bound is not adequate to do hyperparameter selection as its
maximum does not lie in regions with high information score.

4.12.0.5 Choice of likelihood

In our experiments, we worked with two different likelihood functions, namely the cumulative
logistic and the cumulative Gaussian likelihood. The two functions differ in their slope at the
origin and their asymptotic behaviour. We did not find empirical evidence supporting the use
of either likelihood. Theoretically, the cumulative Gaussian likelihood should be less robust
against outliers due to the quadratic asymptotics. Practically, the different slopes result in a
shift of the latent function length scale in the order of ln 1

4 − ln 1√
2π
≈ 0.46 on a log scale; the

cumulative logistic likelihood prefers a bigger latent scale. Only for the VB method, differences
were significant because the cumulative logistic bound is more concise.

Results across datasets

We conclude with a quantitative summary of experiments conducted on 6 datasets (breast,
crabs, ionosphere, diabetes, sonar, USPS 3 vs. 5), two different likelihoods (cumulative Gaus-
sian, cumulative logistic) and 8 covariance functions (linear, polynomial of degree 1-3, Matérn
ν ∈ { 3

2 , 5
2}, squared exponential and neural network) resulting in 96 trials. All 7 approximate

classification methods were trained on a 16 × 16 grid of hyperparameters to compare their
behaviour under a wide range of conditions. We calculated the maximum (over the hyper-
parameter grid) amount of information, every algorithm managed to extract from the data in
each of the 96 trials. Table 4.10 shows the number of trials, where the respective algorithm had
a maximum information score that was above the mean/median (over the 7 methods).

Test \ Method LA EP KL VB FV LR TAPnaive
# trials, information below mean 31 0 0 6 34 92 31
# trials, information below median 54 0 0 15 48 96 51

Table 4.10: Algorithm comparison across datasets

4.13 Discussion

We provide a comprehensive overview of methods for approximate Gaussian process classifi-
cation. We present an exhaustive analysis of the considered algorithms using theoretical argu-
ments. We deliver thorough empirical evidence supporting our insights revealing the strengths
and weaknesses of the algorithms. Finally, we make a unified and modular implementation of
all methods available to the research community.

We are able to conclude that the expectation propagation algorithm is, in terms of accu-
racy, always the method of choice, except if you cannot afford the slightly longer running time
compared to the Laplace approximation.
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Our comparisons include the Laplace approximation and the expectation propagation algo-
rithm [Kuss and Rasmussen, 2005]. We extend the latter to the cumulative logistic likelihood.
We apply Kullback-Leibler divergence minimisation to Gaussian process classification and de-
rive an efficient Newton algorithm. Although the principles behind this method have been
known for some time, we are unaware that this method has been previously implemented
for GPs in practise. The existing variational method [Gibbs and MacKay, 2000, Jaakkola and
Jordan, 1996] is extended by a lower bound on the cumulative Gaussian likelihood and we pro-
vide an implementation based on Newton’s method. Furthermore, we give a detailed analysis
of the factorial variational method [Csató et al., 2000].

All methods are considered in a common framework, approximation quality is assessed,
predictive performance is measured and model selection is benchmarked.

In practise, an approximation method has to satisfy a wide range of requirements. If run-
time is the major concern or one is interested in error rate only, the Laplace approximation or
label regression should be considered. But only expectation propagation and – although a lot
slower – the KL-method deliver accurate marginals as well as reliable class probabilities and
allow for faithful model selection.

If an application demands a non-standard likelihood function, this also affects the choice
of the algorithm: the Laplace application requires derivatives, expectation propagation and the
factorial variational method need integrability with respect to Gaussian measures. However,
the KL-method simply needs to evaluate the likelihood and known lower bounds naturally
lead to the VB algorithm.

Finally, if the classification problem contains a lot of label noise (σf is small), the exact
posterior distribution is effectively close to Gaussian. In that case, the choice of the approx-
imation method is not crucial since in the Gaussian regime, they will give the same answer.
For weakly coupled training data, the factorial variational method can lead to quite reasonable
approximations.

As a future goal remains an in-depth understanding of the properties of sparse and online
approximations to the posterior and a coverage of a broader range of covariance functions.
Also, the approximation techniques discussed can be applied to other non-Gaussian inference
problems besides the narrow applications to binary GP classification discussed here, and there
is hope that some of the insights presented may be useful more generally.



Chapter 5

Adaptive Compressed Sensing of
Natural Images

Multivariate real-world signals are highly structured: For example, the redundancy contained
in natural images, e.g. sparsity after some linear transform, can be used for compression with-
out perceptible loss. As a consequence, one can store an image much more efficiently than
an unstructured collection of independent pixels. However, typical image acquisition devices
such as digital cameras are not aware of this structure during the acquisition process: they mea-
sure every pixel independently. Only later when the image is stored, redundancy is exploited
in compression schemes like JPEG.

Recently the research field of compressed sensing (CS) [Candès et al., 2006, Donoho, 2006a]
with theoretical underpinnings from approximation theory [Ismagilov, 1974, Kashin, 1978, Gar-
naev and Gluskin, 1984] emerged. Its main goal is to exploit redundancy in the acquisition pro-
cess already. The main result is that structured signals like images can be sampled below the
Nyquist-limit and still be reconstructed to satisfaction, if nonlinear reconstruction algorithms
are used and regular undersampling designs are avoided. The randomised measurement de-
sign, however, is non-adaptive to the particular signal to be measured itself.

In this chapter which is an extended version of Seeger and Nickisch [2008a], we address the
CS problem within the general framework of statistical (Bayesian) experimental design. For
particular natural images, we optimise the sub-Nyquist image measurement architecture so
that the subsequently nonlinearly reconstructed image contains as much information as possi-
ble. We present experimental results shedding more light on how to make CS work for images.
In a large study using 75 standard images, we compare various CS reconstruction methods util-
ising random measurement filters from different ensembles to a number of techniques which
sequentially search for these filters, including our own, and Bayesian projection optimisation
[Ji and Carin, 2007]. Similar to Weiss et al. [2007], we find that a simple heuristic of measur-
ing wavelet coefficients in a fixed, top-down ordering significantly outperforms CS methods
using random measurements, even if modern CS reconstruction algorithms are applied; the
approach of Ji and Carin [2007] performs even worse. Beyond that, we show that our efficient
approximation to sequential Bayesian design can be used to learn measurement filters which
indeed outperform measuring wavelet coefficients top-down. Our results show that the prop-
erty of incoherence of a measurement design, which plays a central role in the “unstructured
except for random sparsity” theoretical CS setting, bears only little significance for measuring
real natural images. As we will discuss in more detail, our findings indicate that certainly for
natural images, but also for other signals with non-Gaussian but structured statistics, measure-
ment designs can be optimised in a data-driven way from little concrete prior knowledge, with
outcomes that can be significantly superior to uninformed or even coloured random designs.
The main property driving the design optimisation in our case is the ability of the Bayesian re-
construction method to maintain valid uncertainty beliefs about its point estimates at all times.

The structure of the chapter is as follows. The experimental design approach to CS is intro-
duced in section 5.1 and our image acquisition model is detailed in section 5.2. Our framework
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for approximate inference is described in section 5.3, where we also show how to apply it to
large problems, especially for sequential acquisition. Other approaches to the same problem
are reviewed in section 5.4. The empirical validation encompasses a series of experiments,
comparing a range of adaptive compressed sensing methods on artificial data (section 5.5.1),
and on the problem of measuring natural images (section 5.5.2).

5.1 Introduction

Compressed sensing [Candès et al., 2006, Donoho, 2006a], also known as compressive sam-
pling, can be motivated as follows. Suppose a signal, such as an image or a sound waveform,
is measured and then transferred over some channel or stored. Traditionally, the measurement
obeys the Nyquist theorem, allowing for an exact reconstruction of any (band-limited) signal.
However, what follows is usually some form of lossy compression, exploiting redundancies
and non-perceptibility of losses. Given that, can the information needed for a satisfactory re-
construction not be measured below the Nyquist frequency by so called undersampling? In
many key applications today, the measurement itself is the main bottleneck for cost reductions
or higher temporal/spatial resolution. Recent theoretical results indicate that undersampling
should work well if randomised designs are used, and if the signal reconstruction method specif-
ically takes the compressibility into account.

We formally introduce redundancy in section 5.1.1, then define the CS problem and describe
in section 5.1.2 how experimental design can be used to tackle it and finally discuss adaptive
compressed sensing in section 5.1.3.

5.1.1 Redundancy, compressibility and natural images

Intuitively, redundancy is equivalent to compressibility of a signal since the two terms mutually
imply each other. Formally, Shannon’s source coding theorem [Shannon, 1948] states that the
minimal per-variable code length of an infinitely long sequence of (i.i.d.) random variables xi ∼
P(x) is precisely given by the entropy H[P(x)]. For fixed mean and variance, the multivariate
Gaussian distribution has maximal entropy making Gaussian noise the least structured signal
with maximal coding length. For a multivariate random variable, entropy depends not only
on non-Gaussianity but also on mutual dependencies. Firstly, independence relations increase
entropy

H[P(xi, xj)] = H[P(xi)] +H[P(xj)]− I(xi, xj) ≤ H[P(xi)] +H[P(xj)],

i.e. the joint entropy H[P(xi, xj)] is maximal if xi, xj are independent, which means they have
mutual information I(xi, xj) zero. Secondly, Gaussianity increases entropy (see appendix D.4)

H[P(xi)] ≤ H[N (xi|µi, σ2
i )], µi = E[xi], σ2

i = V[xi]

meaning that non-Gaussian distributions allow for better compression1. Natural images show
both: super-Gaussian marginals in the gradient domain called sparsity and strong pixel covari-
ance also referred to as second order structure.

Most of the theoretical work on CS however, considers the asymptotic minimax perfor-
mance of certain penalised estimators. In general, signals are assumed to be unstructured except
for random sparsity – a concept whose validity depends on whether we aim to hedge against the
worst case, or whether we place ourselves in a more benevolent setting, where active reduc-
tions in uncertainty normally lead to better predictions.

Natural images exhibit transform sparsity, yet random measurements favoured by CS the-
ory can be suboptimal for them [Weiss et al., 2007]. The reason is that there is – as pointed

1Of course, continuous random variables have to be discretised to be stored on a computer. If discretised into
equal bins Bi = b0 + [i− 1, i] · ∆, i = 1..N (minimises maximum democratisation error), the entropy code uses code
words of lengths `i = logN pi, where pi =

∫
Bi

P(x)dx is the probability of the ith symbol.
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before – more to low-level image statistics than random sparsity alone; knowledge that can be
modelled tractably [Simoncelli, 1999].

5.1.2 The compressed sensing problem and experimental design

It is important to distinguish between i) the CS problem, ii) signal characteristics making CS
possible, iii) reconstruction methods incorporating these properties, and iv) theoretical results
about the problem in principle, or v) about specific reconstruction methods. In the recent surge
of activity on CS, such distinctions are not always precisely stated, which may lead to confu-
sion. CS constitutes a problem, which in practise is amply motivated by cost reductions. Fewer
measurements, or less precise sampling, can lead to similar quality in signal reconstruction, at
the expense of having to design and run a more difficult reconstruction method, and also (in
general) of having to modify “standard” measurement designs. Not all types of signals are
admissible to CS. For example, for band-limited random noise, the Nyquist theorem is tight. In
general, CS is applicable to signals whose distribution has some structure that is known a priori,
before any measurements are done. Since such knowledge can be used to compress samples,
signals of that sort are also called compressible. A very important structure, which is charac-
teristic to some extent for many signals, is sparsity: if the signal in its standard representation
is transformed linearly, most coefficients are very close to zero, while a few can be large. We
will discuss sparsity below in more detail. One can think about structural prior knowledge as
a (partial) ordering on the representation space of the signal. In this ordering, a signal is “less
complex” than another one, if it adheres better to prior knowledge.

Any solution to the CS problem has to master two related, but different tasks. First, for
given measurements, an estimate of the signal has to be computed taking into account prior
knowledge. This is called signal reconstruction. Second, the decision of how to measure in the
first place has to be taken.

Bayesian experimental design offers a powerful way of addressing both points. The struc-
tural prior knowledge about a signal (its compressibility) is encoded into a prior distribution,
under which signals of low complexity in general, or high (transform) sparsity in particular,
have most mass. By the Nyquist theorem, all signals within some band are identifiable through
the likelihood function of measurements spaced closely enough. A Bayesian (as well as a CS) re-
construction of the signal, however, is obtained by combining likelihood and prior: signals which
are sufficiently likely under the prior, can often be reconstructed from a likelihood function of
undersampled measurements2, at lower cost than with a foolproof Nyquist-spaced sample.

The problem of optimising the measurement structure (or design), so that less measure-
ments are needed to attain the same reconstruction quality, is harder in general. For this prob-
lem, Bayesian experimental design offers a powerful and general solution. In the context of
natural images, maximally incoherent (random) designs perform rather poorly, while properly
optimised designs can improve upon the engineering status quo. Remarkably, the same prior
knowledge is available to both Bayesian design and CS reconstruction methods. While in our
Bayesian setup, prior and observations are used in order to choose good subsequent measure-
ments, this seems hard to do with CS point estimation techniques.

5.1.3 Adaptive sequential compressed sensing

In order for CS to work, one exploits compressibility properties of a general class of signals.
However, it is clear, that one can improve by restricting the signal class. An acquisition process
depending on the particular signal one is measuring, is called adaptive. Furthermore, if the next
acquisition step depends on previous ones, the acquisition is termed sequential.

Our setup is sequential; new measurements are appended to the measurement design one
at a time. Adaptive techniques, such as ours, make use of all measurements obtained so far

2The Nyquist theorem states that there are always some signals that cannot be reconstructed properly from an
undersampled likelihood, but a well-chosen design can ensure that most of these “bad signals” have very low prior
probability.
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to decide upon the next, while non-adaptive methods neglect this sequential information. A
simple non-adaptive approach is to sample the design matrix at random, using independent
Gaussian or Bernoulli entries, or random rows of the discrete Fourier transform (DFT) matrix.
Also, coloured random projections have been proposed [Wang et al., 2007], to take into account
second order structure of the signal besides sparsity. A different approach for a priori measure-
ment design is given in Elad [2007], where the measurement matrix is optimised to make its
rows maximally incoherent with the sparsifying transform. A similar argument lets Candès
et al. [2006] use the noiselet transform [Coifman et al., 2001]: it is maximally incoherent to the
Haar wavelet basis.

On the other hand, with adaptive techniques, the next measurement is chosen to maximise
a criterion which depends on the measurements made so far. For example, the hierarchical
nature of multi-scale wavelet coefficients motivates the adaptive heuristic proposed in Dekel
[2008]. An approximate Bayesian approach to compressed sensing (BCS) has been presented in Ji
and Carin [2007], making use of sparse Bayesian learning (SBL) [Tipping, 2001]. The method can
be improved by exploiting the structure in the wavelet transform [He and Carin, 2009].

We extend the BCS/SBL approach by using a more general inference approximation, ex-
pectation propagation [Minka, 2001a], leading to much better reconstruction performance in
our application. As we argue below, BCS/SBL method seems to be over-aggressive in terms
of sparsification, leading to avoidable mistakes on natural images, which are just not strictly
sparse in general. Moreover, their uncertainty (posterior covariance) estimates seem to be ad-
versely affected by the aggressiveness, which in turn spoils design adaptation. In addition, our
framework is easily generalised to non-Gaussian observation likelihoods, skew prior terms,
and generalised linear models [Gerwinn et al., 2008], and our methodology and comparisons
have a broader scope. In the next section, we will describe the probabilistic model in detail.

5.2 Probabilistic natural image acquisition

Bayesian experimental design (see chapter 2.6.2) for optimising natural image acquisition fits
into the linear model framework of chapter 2. Here, an image is represented as a pixelised
bitmap, which (for notational convenience only) is stacked into a vector u ∈ Rn (where n is
the number of pixels). In our example, ui are grey-scale values, but an extension to colour
images is straightforward. The task is to reconstruct u (the latent variables) from noisy linear
measurements

y = Xu + ε, X ∈ Rm×n, ε ∼ N (0, σ2I). (5.1)

X is called the design or measurement matrix, its rows are measurement filters. The filters are
constrained to have unit norm3. Note that m < n in general, since measuring each pixel in turn
is not considered an efficient design. The reconstruction problem is therefore underdetermined,
and (X, y) constitute an undersampling of u. The task is to choose the filters in a sequential
manner (one after the other) to obtain a satisfactory reconstruction of u with as small m as
possible. Note that in real-world instances of this problem, additional constraints on the filters
(beyond unit norm) may be present. Our solution presented here readily extends to constrained
filter optimisation as well (see section 5.4.2).

The prior distribution P(u) should encode properties which are characteristic of natu-
ral images, and this is where sparsity comes into play. While classical Bayesian analysis for
the linear model (equation 5.1) employs Gaussian priors for u, and experimental design is
well-developed in general for the Gaussian case (see Chaloner and Verdinelli, 1995 and chap-
ter 2.6.1), natural image statistics are distinctively non-Gaussian because zero mean filter re-
sponses of natural images follow sparse distributions [Simoncelli, 1999]. Our image prior here
is composed of Laplace (or double exponential) potentials

Ti(si) :=
τi

2
e−τi |si |, si = [Bu]i = b>i u, (5.2)

3If we design X, it will be important to keep its rows of the same scale. Otherwise, a measurement can always be
improved (at fixed noise level σ2) simply by increasing its norm.
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whose coefficients si are linear functions of the image u, collected in the transform matrix B. In
contrast to the Gaussian, the Laplacian is a sparsity-enforcing distribution: it concentrates more
mass close to zero, but also has heavier tails. If P(u) ∝ ∏i Ti(si), then with Laplace potentials,
the preference is for s to have most components very close to zero, allowing some components
to be large, while with Gaussian potentials Ti, no large si are tolerated, while there is also no
pressure on the components to become very small. This notion is explained in more detail in
Seeger [2008], Tipping [2001]. Our image prior employed here puts sparse distributions on
multi-scale finite pixel differences. It falls naturally into two parts:

First, the total variation (TV) potential is a product of Laplace terms looking at image gradi-
ents by the extremely sparse finite difference matrix D ∈ {−1, 0,+1}2(n−√n)×n so that Du =
[dx; dy], with dx, dy denoting the finite image derivatives in horizontal and vertical direction.
The total variation potential can be written as exp(−τD‖Du‖1), where ‖s‖1 := ∑j |sj| denotes
the L1 norm. They encode smoothness of images: neighbouring pixels tend to have similar
grey-scale values, with occasional large differences due to edges, which agrees with the con-
centration at zero and the heavy tails of the Laplace density.

Second, the wavelet or transform sparsity potential looks at coarser scale derivatives as com-
puted by the (orthonormal) wavelet transform W yielding exp(−τW‖Wu‖1). Note that his-
tograms of wavelet coefficients over natural images can be fit closely by a Laplace distribution
[Simoncelli, 1999]. In our experiments, we always use the Daubechies 4 wavelet [Daubechies,
1992].

The parameters τD, τW represent the strength (or scale) of each term. Large values of τD, τW
mean very tight potentials allowing only for small deviations from zero. P(u) is the normalised
product of the two potentials4. Both matrices D and W are highly structured allowing for
efficient matrix vector multiplications in O(n) time and space. Setting B = [D; W], our setup
becomes an instance of the sparse linear model (SLM), where the Bayesian posterior distribution
has the form

P(u|y) ∝ N (y|Xu, σ2I)
q

∏
i=1
Ti(si), s = Bu. (5.3)

For large numbers of image pixels n, it is essential that matrix-vector multiplications (MVMs)
with X, X> can be computed efficiently, as well. Our framework can readily be used with Ti(si)
that are not Laplace. If the Ti are log-concave, as is the case here, our method can be shown to
be numerically stable [Seeger, 2008].

Many CS reconstruction methods (section 5.4) can be understood as maximum a-posteriori
(MAP) estimation

û = arg max
u

log P(u|y) = arg max
u

log P(y|u)P(u). (5.4)

Here, − log P(y|u)P(u) is referred to as energy, and MAP estimation as energy minimisation.
If − log P(y|u) and − log P(u) are convex in u, as is the case for Gaussian and Laplace dis-
tributions, MAP estimation is a convex problem and can be solved efficiently. In this sense,
the image prior constructed above is used in several CS estimation applications [Candès and
Romberg, 2004], which is the main reason for using it here as well. In contrast, the Bayesian
estimate of u is given by the posterior mean E[u|y] = EP(u|y)[u]. Decision theory (see chapter
2.1.2) states that the posterior mean is a better estimate than the posterior mode, if the objective
is to minimise the squared error [Lehmann and Casella, 1998, chapter 4]. The mean is consis-
tent under marginalisation (meaning that the Bayesian estimate of a part of the image is simply
the corresponding part of the mean), while the mode is not. On the other hand, for the model
considered here, no computationally tractable method for computing the exact mean is known

4P(u) is normalisable, because the transform sparsity potential is. Technically, the total variation potential is not
normalisable on its own. However, it is still possible (and, in fact, works well) to use our method with τsp = 0,
since in undirected graphical models, the “prior” P(u) need not be normalisable. In general, P(u) should not be
understood as a sensible generator for natural images anyway, but rather as incorporating some important natural
image characteristics.
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(even though− log P(u|y) is convex), and an approximation is harder to compute than solving
for the mode (see section 5.3).

The problem of experimental design is to choose X among many candidates, so that subse-
quent measurements allow the best reconstruction of u. Importantly, the approach is at least
partly “closed-loop”, in that it is not required to in fact do real measurements for most of the
candidates. To understand this, keep in mind that (5.3) is only a model of the true measure-
ment process, which however, combined with a growing number of real measurements, can
successfully be used to predict the informativeness of new sampling not yet done. To do this,
we need a quantitative statement about our uncertainty in u at the moment, which is the pos-
terior P(u|y). An extension of our design means new rows in X. Its informativeness is scored
by imagining the new measurement being done with outcome y∗, then measuring the decrease
in uncertainty from P(u|y) to P(u|y, y∗) as measured by the entropy difference or information
gain (see chapter 2.6.2) H[P(u|y)]−H[P(u|y, y∗)]. Since y∗ is not known, it is integrated out
using P(y∗|y) =

∫
P(y∗|u)P(u|y)du. We now have information scores as criteria driving an

optimisation of the design. It is clear that these are fundamentally based on a representation of
uncertainty, the posterior in the Bayesian case, and that algorithms which merely estimate point
solutions from given data, cannot be used directly in order to compute them. With such meth-
ods, either rules of thumb have to be followed to obtain a design (such as “do it at random”),
or many measurements have to be taken in a trial-and-error fashion. The edge of Bayesian
experimental design is that through a combination of the model and real measurements, a con-
tinuously refined uncertainty statement is obtained, based on which uninformative sampling
can often be avoided. This way, often substantially fewer real measurements are required. An-
other important point is that experimental design works, although the true underlying u is not
known. This is what drives sequential design optimisation and makes the gathering of large
“training data” collections unnecessary5.

5.3 Approximate inference

Bayesian inference is in general not analytically tractable for models of the form (5.3), and has
to be approximated. Moreover, the application of interest here demands high efficiency in
many dimensions (n = 4096 in the natural image experiments here). Importantly, Bayesian
experimental design does not only require inference just once, but many times in a sequential
fashion. We make use of the expectation propagation (EP) method [Minka, 2001a], together with
a robust and efficient representation for Q(u) ≈ P(u|y). As a novelty, we will show here how
the framework can be run efficiently for large n, and how sequential design optimisation can
be sped up by orders of magnitude.

We first provide some intuition about the inference method in terms of what it is going
to achieve and also in terms of the underlying geometry. Then, we will discuss the technical
formulation of the algorithm and comment on how to scale it up to large sizes.

5.3.1 Inference and estimation

Before we describe the EP approximation, we will give an intuitive view on what inference is
about, and how algorithms to approximate it differ from estimation methods. In many statis-
tical problems — certainly the ones concerned with images — experience suggests that there
are many potential constraints, which should to some degree be met by the underlying signal
to be reconstructed. For example, observations imply constraints through likelihood terms,
each of which may depend on all latent variables. Moreover, prior constraints for images are
often local in nature, enforcing smoothness by constraining neighbouring pixels to have sim-
ilar values, as in the total variation potential described above. However, strictly enforcing all
constraints is usually not possible, or leads to trivial solutions. Rather, the constraints have to

5 Another way to view experimental design is that this process of gathering training data is done actively, so that
data is sampled where really needed to gain further clarity, typically at substantial reductions in cost.
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be weighted against each other. In estimation methods, this constraint weighting is done in a
rough way: either, some constraints have to be met (infinite weight), or the constraints are split
into two groups (usually likelihood versus prior), with equal weighting within groups (see sec-
tion 5.4). In contrast, with Bayesian inference, all constraints are fundamentally probabilistic.
An approximate inference method such as EP can be thought of as finding a proper weighting
across all constraints in an iterative process of negotiation between all model potentials: “mes-
sages” are exchanged between neighbouring potentials, until at convergence an equilibrium
of mutual agreement is established. Importantly for our application here, these negotiation
mechanisms are in terms of distributions (or beliefs), encoding uncertainties of potentials about
the state of neighbouring ones or about their own state. At convergence, these beliefs approx-
imate posterior uncertainties, which in turn drive Bayesian experimental design. Moreover,
we will see below how they can be used within the algorithm itself, in order to attain faster
convergence. These additional information sources are not required, and therefore not present,
in pure estimation methods.

(a) Point estimation

(b) Bayesian posterior mean and MAP point estimation

Figure 5.1: Geometrical illustration of several inference and estimation methods
We geometrically contrast the penalised least squares estimator with the posterior mean and
mode estimator.
In panel 5.1a), we depict point estimation in the sparse linear model. From left to right: sparsity
objective ‖u‖1, feasible region {u ∈ Rn | 1

2 ‖Xu− y‖2 ≤ σ} (X ≡ grey line, B = I), optimal
solution (grey cross). Note that the estimator is sparse since the optimum will be at a corner,
here û2 = 0.
Panel 5.1b) illustrates Bayesian inference. From left to right: sparsity prior ∏i Ti(ui|τ), observa-
tion likelihood N (y|Xu, σ2I) (X ≡ grey line, B = I), posterior distribution P(u|y) and its mean
(white cross). The MAP or mode estimator is found at the (black) peak of the posterior. Note
that the MAP estimator also exhibits sparsity.

Pictorial geometrical illustration

Figure 5.1 provides an (admittedly low-dimensional) geometrical intuition about the relations
between different estimation techniques. Figure 5.1a illustrates the situation for the relaxed L1
case: the L1 regulariser is minimised inside the feasible region – the estimator chooses among
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all feasible coefficients the ones with maximal sparsity. Many of the coefficients of the solution
will turn out to be zero, since the optimum is attained at a corner of the objective. The Bayesian
inference case is shown by figure 5.1b: the sparsity prior assigns higher probabilities to signals
close to the coordinate axes. The likelihood smoothly cuts out the subspace compatible with the
noisy observations. Combining both of them, the posterior puts mass to all plausible signals
under our model. The posterior mode also shows sparsity characteristics. The posterior mean
is the best signal estimate in the squared error sense [Lehmann and Casella, 1998]. Since EP
is the most accurate way (see experiments in chapter 4) of approximately computing posterior
moments such as the mean, we choose it as our inference engine.

5.3.2 Expectation propagation

In EP (see also chapter 2.5.10), the posterior P(u|y) is approximated by a Gaussian distribution
Q(u) with 2q free (variational) parameters (β, γ), which are formally introduced by replacing
the non-Gaussian potentials Ti(si) by Gaussian potentials T̃i(si) := eβisi/σ2−s2

i /(2σ2γi)) in (equa-
tion 5.3). Beyond (β, γ), it is usually necessary to maintain a representation of Q, so that marginal
distributions Q(si) can be obtained rapidly. For an EP update at potential i, we compute the
Gaussian moments of the tilted distributions

P̂i(u) ∝ N (y|Xu, σ2I)∏
j 6=i
T̃j(sj)T̃i(si)

1−ηTi(si)
η ,

then update Q(u) to match these moments, which can be done by modifying (βi, γi) only. Here,
η ∈ (0, 1] is a fractional parameter6. As motivated above, the single updates form a process of
negotiation between all potentials Ti(si), which is resolved at convergence, where the means
and covariances of all P̂i are the same. In each EP update, we merely need to compute mean
and variance of the non-Gaussian marginal P̂i(si), and to update the Q(u) representation to
accommodate the novel (βi, γi) as detailed in the next section.

5.3.2.1 Posterior representation and update

A numerically stable representation of Q(u) [Seeger, 2008] maintains the n× n Cholesky factor
L and the n vector α, so that

LL> = X>X + B>Γ−1B = σ2 (VQ[u])
−1 ,

α = L−1(X>y + B>β) = L>EQ[u], Γ = dg(γ).

For an EP update at potential Ti, we require Q(si) = N (si|hi, σ2ρi), where hi = r>i α, ρi = ‖ri‖2

with ri = L−1bi. The back-substitution costs O(n2). The update requires finding β′i, γ′i , so that
P̂i(si) and Q′(si) have the same mean and variance. Numerically stable moment matching is
a nontrivial task. Finally, L, α are updated, using numerical mathematics code for rank one
Cholesky update/downdate, which costs O(n2).

5.3.2.2 Selective update and design

For selective potential updating, all marginals (h, ρ) need to be present at all times (see section
5.3.3). This can be done by using the Woodbury formula at the cost of two back-substitutions
with L, rather than one only as detailed in Seeger [2008].

In our sequential design applications, score the informativeness of new candidates x∗ (as
potential new row of X) by the entropy difference (see section 5.1). If Q′ is the approximate
posterior after including x∗, then H[Q′] = log |VQ′ [u]|/2 + C, where Q′ differs from Q in that

6η = 1 gives standard EP, but choosing η < 1 can increase the robustness of the algorithm on the sparse linear
model significantly [Seeger, 2008]. We use η = 0.9 in all our experiments.
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(X′)>X′ = X>X + x∗x>∗ , and γ → γ′. We approximate the entropy difference by assuming that
γ′ = γ, whence

H[Q]−H[Q′] =
1
2

log
(

1 + σ−2x>∗ VQ[u]x∗
)

.

Since ‖x∗‖2 = 1 by assumption, this score is maximised by choosing x∗ along the principal
(leading) eigendirection of VQ[u], which can be calculated by the Lanczos method [Lanczos,
1950, Golub and van Loan, 1996]. The same score is used in Ji and Carin [2007], yet the approx-
imation of the posterior and its covariance is fundamentally different (see section 5.4).

5.3.3 Large scale applications

There will be two major issues if we apply our method for large image sizes n. First, the EP
potential updates are typically done in random sweeps over all potentials, because it is not
clear a priori which particular potential ordering leads to fastest convergence. This problem
is severe in our sequential design application to natural images, since there are many small
changes to X, y (individual new measurements), after each of which EP convergence has to be
regained. We approach it by forward scoring many potential candidates before each EP update,
thereby always updating the one which gives the largest posterior change. This is detailed just
below. Second, the robust Q representation of section 5.3.2.1, which is used in the experiments
here, requires O(n2) memory, and each update costs O(n2) (see section 5.3.2.1). If m � n at
all times, a different representation of size O(m2) can be used. Beyond that, our method can
also be run representation-free, requiring O(n) storage only, if marginals are approximated by
linear conjugate gradients and the Lanczos algorithm. However, either of these modifications
leads to a loss in numerical accuracy.

Our selective updating scheme for EP hinges on the fact that we can maintain all poten-
tial marginals (h, ρ), Q(si) = N (si|hi, σ2ρi), up-to-date at all times. We can quantify the
change of Q through an update at a potential Ti, by the relative entropy KL[Q′i(si) ‖Q(si)]
(Q′i the posterior after the update at Ti), which can be computed in O(1). Here, the Kullback-
Leibler divergence KL[P ‖Q] measures the gain in information from Q → P. Importantly,
KL[Q′i(u) ‖Q(u)] = KL[Q′i(si) ‖Q(si)], so the score precisely measures the global amount of
change Q → Q′i. We maintain a list of candidate potentials which are scored before each EP
update, and the update is done for the winner only. The list is then evolved by replacing the
lower half of worst-scoring potentials by others randomly drawn from {1, .., q}. Importantly,
the marginals (h, ρ) can be updated along with the representation of Q(u).

Our sequential Bayesian design method is sketched in algorithm 5.1. Here, d new rows are
appended to X in each iteration (d = 3 in our experiments in section 5.5.2).

5.4 Related work and extensions

In this section, we describe work related to ours, focusing on methods that we compare against
in section 5.5.2. We also comment on constrained design optimisation within our framework.

Typically, CS reconstruction from incomplete measurements [Candès et al., 2006, Donoho,
2006a] is done by minimising a norm penalty under some sharp observation constraints

û = arg min
u
{‖Bu‖p s.t. Xu = y}, p ∈ {1, 2}. (5.5)

Here, ‖s‖2 :=
√

s>s denotes the L2 norm. Maximum sparsity in s = Bu is obtained for p = 0,
yet this L0 estimation problem is NP hard. If p = 1 is chosen instead, the corresponding
solution can be found efficiently by solving a linear program. In highly sparse situations, this
LP relaxation yields the exact solution to the L0 problem [Donoho, 2006b]. In our experiments
below, we consider several special cases. The simplest CS method (called L1) is obtained by
choosing p = 1 and B = W (the wavelet transform). It is also known as basis pursuit [Chen
et al., 1999]. Classical least squares estimation (called L2) uses p = 2 and B = W. Since B
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Algorithm 5.1 Sequential Bayesian experimental design

Require: Initial X, y, τsp, τtv, σ2

β = 0), γ = 2[τ−2
D 1; τ−2

W 1]
Compute initial Q representation, marginals (h, ρ)
repeat

J = {1, .., q} (for first update)
repeat

Compute ∆i = KL[Q′i ‖Q] for all i ∈ J, using (h, ρ).
EP update at potential î = arg maxi∈J ∆i.
Update of Q representation, marginals (h, ρ).
Evolve J (shrink to desired size after first iteration).

until ∆î below threshold
Find X∗ ∈ Rd×n: d leading unit norm eigendirections of VQ[u] (Lanczos algorithm).
Measure image with X∗ → y∗ ∈ Rd.
Append (X∗, y∗) to (X, y).

until X has desired size, or Q(u) has desired entropy

is orthonormal, we have ‖Bu‖2 = ‖u‖2, and û is given as solution of the normal equations:
û = X>(XX>)−1y.

We also consider a method with transform sparsity and total variation potential [Candès
and Romberg, 2004] (called L1 + TV here):

û = arg min
u
{τW‖Wu‖1 + τD‖Du‖1 + (2σ2)−1‖y− Xu‖2

2}.

Note that L1 + TV is the MAP estimator (equation 5.4) for the same model we employ in our
Bayesian method. It is also known as the Lasso [Tibshirani, 1996] or the penalised least squares
estimators of chapter 2.2.1. L2 and L1 (equation 5.5) can be seen as MAP estimators as well, if
the noise variance σ2 is set to zero, so that the likelihood constraints have infinite weight (see
section 5.3).

The algorithm of Ji and Carin [2007] is called BCS. It comes with a transform sparsity po-
tential only, so that s = Wu. BCS employs sparse Bayesian learning [Tipping, 2001] in order
to approximate Bayesian inference. This technique is specific to sparse linear models (all Ti
have to be Gaussian scale mixtures, thus even functions), while EP can be applied with little
modification to models with skew priors or non-Gaussian skew likelihoods as well [Gerwinn
et al., 2008]. We used the following code in our experiments.

L1 + TV http://www.acm.caltech.edu/l1magic/

L1 http://www.stanford.edu/~mlustig/

BCS http://www.ece.duke.edu/~shji/BCS.html

5.4.1 Wavelet transformation code

In order to have simple and efficient implementation of the wavelet transforms for tensors, we
set up the FWTN package. The FWTN code includes a standalone implementation of orthonor-
mal wavelet transforms for D-dimensional tensors in L levels. It is generic in the quadrature
mirror filter, so any filter (Haar, Daubechies etc.) can be used. Runtime is O(n) with n being
the number of elements of the tensor. The code is written in plain C; a Matlab/Octave mex
wrapper as well as a demo is provided. In Matlab, you simply type the following to perform
the transformation.

qmf = [1,1]/ sqrt (2); % Haar Wavelet

L = 3; % # Levels in the pyramid

W = fwtn(X,L,qmf); % apply FWTN

http://www.acm.caltech.edu/l1magic/
http://www.stanford.edu/~mlustig/ 
http://www.ece.duke.edu/~shji/BCS.html 
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% Daubechies 4 Wavelet

qmf = [1+ sqrt(3), 3+sqrt(3), 3-sqrt(3), 1-sqrt (3)]/ sqrt (32);

Z = ifwtn(W,L,qmf); % apply inverse transform

Code is available from http://www.kyb.tue.mpg.de/bs/people/hn/fwtn.zip or the corre-
sponding mloss.org project http://mloss.org/software/view/242/.

5.4.2 Optimisation of designs under constraints

In our study on optimising image measurements, we assume that filters can be chosen any-
where on the unit sphere. In typical applications of this scenario, additional constraints have to
be placed on the rows of X. For example, in magnetic resonance imaging, Fourier coefficients
are measured along constrained paths in Fourier space. Or in digital photography, cameras
may not be able to realise arbitrary filters x∗ (see chapter 2.6.4).

In many scenarios in practise, the number of candidates x∗ for the next measurement is
finite and rather small [Seeger et al., 2007]. In this case, called transductive design, it is easiest
to score all candidates and pick the one maximising the information criterion. In one setup in
section 5.5.2, we restrict our Bayesian experimental design technique to select among wavelet
coefficient filters only. This case is very simple to deal with, since these coefficients feature in
the transform sparsity prior potential. If x∗ = bj is such a filter, then x>∗ VQ[u]x∗ is simply
the variance of Q(sj), where Tj(sj) is the corresponding prior potential. If selective potential
updating is used (see section 5.3.3), the variances for all these sj are maintained at all times,
so the optimisation over all wavelet coefficient filters comes almost for free. Obviously, the
marginals of any other set of linear projections of u can be kept up-to-date alongside as well,
independently of whether they feature in the potentials of the model. Therefore, any extension
of the setting considered here, based on a fixed candidate set, where the matrix containing
all candidate filters as rows admits a fast matrix-vector product, can be implemented very
efficiently.

However, in general the problem of maximising our information criterion, subject to further
constraints, is not convex. The function x>∗ VQ[u]x∗ is convex in x∗, and the maximisation of a
convex function, subject to convex constraints, can be hard. If the constraint set is a ball w.r.t.
some Euclidean norm, centred at zero, the optimal x∗ is a (generalised) eigenvector, which is
what we use in our setup here. In general, we recommend the simple approach of keeping
marginals up-to-date for a finite grid of candidate constraints, then to start some nonlinear
optimisation method from the maximiser x∗ on this grid.

5.5 Experiments

In this section, we provide experimental results for different instances of our framework, com-
paring to CS estimation and approximate Bayesian methods on synthetic data (section 5.5.1),
and on the task of measuring natural images (section 5.5.2).

5.5.1 Artificial setups

It is customary in the CS literature to test methods on synthetic data, generated following the
“truly sparse and otherwise unstructured” assumptions under which asymptotic CS theorems
are proven. We do the same here, explicitly using the “(non-)uniform spikes” [Ji and Carin,
2007], but cover some other heavy-tailed distributions as well. It seems that not many signals
of real-world interest are strictly and randomly sparse, so that studies looking at the robustness
of CS theoretical claims are highly important. In this section, signals are sparse as such, so
that B = I and u = s here. We compare methods described in section 5.1 and section 5.4. It
is important to stress that all methods compared here (except for L2) are based on exactly the
same underlying model (equation 5.3) with B = I, and differences arise only in the nature of
computations (approximate Bayesian inference versus maximum a-posteriori estimation), and

http://www.kyb.tue.mpg.de/bs/people/hn/fwtn.zip
http://mloss.org/software/view/242/
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in whether X is sequentially designed (EP, BCS) or chosen at random (Lp reconstruction; we
follow CS theory [Candès et al., 2006, Donoho, 2006a] and sample rows of X uniformly of unit
norm). Results are shown in figure 5.2.

The “sparsity” (or super-Gaussianity) of the signal distributions increases from (5.2a) to
(5.2e-f). For Gaussian signals (5.2a), L2 reconstruction based on random measurements is op-
timal. While all CS methods and BCS (random and designed) lead to large errors, EP with
design matches the L2 results, thus shows robust behaviour. For Laplacian and Student’s t
signals (5.2b-c), designed EP outperforms L2 reconstruction significantly, while even the CS
L1 method still does worse than simple least squares. BCS performs poorly in all three cases
with signals not truly sparse, thus is not robust against rather modest violations of the strict CS
assumptions. Its non-robustness is also witnessed by large variations across trials.

On the other hand, L2 performs badly on truly sparse signals. In all cases (5.2d-f), EP with
design significantly outperforms all other methods, including designed BCS, with special ben-
efits at rather small numbers of measurements. BCS does better now with truly sparse signals,
and is able to outperform L1.

From the superior performance of EP with design on all signal classes, we conclude that
experimental design can sequentially find measurements that are significantly better than ran-
dom ones, even if signals are truly sparse. Moreover, the superior performance is robust against
large deviations away from the underlying model, more so even than classical L1 or L2 estima-
tion. The poor performance of BCS [Ji and Carin, 2007] seems to come from their desire for
“premature sparsification”. During their iterations, many γi are clamped to 0 early in the opti-
misation for efficiency reasons. This does not hurt mean predictions from current observations
much, but affects their covariance approximation drastically: most directions not supported
by the data at present are somewhat ruled out for further measurements, since the posterior
variance along them (which should be large) is shrunk in their method. In contrast, in our EP
method, none of the γi becomes very tiny with modest m, and our covariance approximation
seems good enough to successfully drive experimental design. Without premature sparsifica-
tion, our scheme is still efficient, since the most relevant potential updates are found actively,
and the need to eliminate variables does not arise.

5.5.2 Natural images

In this section, we are concerned with finding linear filters which allow for good reconstruc-
tion of natural images from noisy measurements thereof. Natural images exhibit sparsity in
a wavelet domain, fulfilling the basic requirement of CS. Theoretical results seem to suggest
that measurement filters can be drawn at random, and there have been considerable efforts
to develop hardware which can perform such random measurements cost-efficiently [Duarte
et al., 2008]. On the other hand, much is known about low-level natural image statistics, and
powerful linear measurement transforms have emerged there, such as multi-scale wavelet coef-
ficients, based on which natural image reconstruction should be more precise than for random
measurements [Weiss et al., 2007].

The sparsity of images in the wavelet domain is highly structured, there is a clear ordering
among the coefficients from coarse to fine scales: natural images typically have much more en-
ergy in the coarse scale coefficients, and coefficients with very small values are predominantly
found in the fine scales. In our experiments, we employ a simple heuristic for linearly measur-
ing images, called wavelet heuristic in the sequel: every measurement aims for a single wavelet
coefficient, and the sequential ordering of the measurements is deterministic top-down, from
coarse to fine scales7. This ordering is a pragmatic strategy: if mainly the coarse scale coeffi-
cients are far from zero, they should be measured first. Do state-of-the-art CS reconstruction
algorithms, based on random linear image measurements, perform better than simple L2 recon-
struction based on the wavelet heuristic? And how does Bayesian sequential design perform

7This ordering follows the recursive definition of such transforms: downsampling by factor two (coarse), hori-
zontal differences, vertical differences, diagonal corrections at each stage. Our ordering is coarse→ horizontal→
vertical→ diagonal, descending just as the transform does.
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Figure 5.2: Comparison of measurement design on 6 random synthetic signals u ∈ R512.
Shown are L2-reconstruction errors (mean±stdard deviation over 100 runs). All methods start
with the same random initial X (m = 40), then “(rand)” add random rows, “(opt)” optimise new
rows sequentially. Noise variance σ2 = 0.005, prior scale τ = 5. BCS: Lp: Lp reconstruction, EP:
our method. a-c): i.i.d. zero mean, unit variance Gaussian, Laplacian (equation 5.2), Student’s
t with ν = 3. d): n

2 of ui = 0, n
4 exponential decay 1, . . . , 0, n

4 minus that, randomly permuted.
e-f): 20 ui 6= 0 at random; (e) uniform spikes, ui ∈ {±1}; f): non-uniform spikes, ui ∼ 1

4 + |t|,
t ∼ N (0, 1); as in Ji and Carin [2007]. Distributions in d-f) normalised to unit variance.
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reconstruction method
type of design X adapt L1 L1 + TV L2 BCS EP
rand uni – abef abef a
rand coloured – b
rand noiselet – b b
heur wave – =L2 d a-f =L2 d
opt free + a a-f
opt wave panel e) and f) + c cef

Table 5.1: Experiment summary matrix for figure 5.4

Figure 5.3: Image dataset used for the experimental design benchmark.
We benchmarked the algorithms on 75 images frequently used in computer vision research.
The bitmaps were obtained from http://decsai.ugr.es/cvg/dbimagenes/g512.php .

on this task, if the model described in section 5.1 is used? Furthermore, how strong is the im-
pact of the total variation potential? Note that no prior knowledge about typical ordering or
dependence among wavelet coefficients is encoded in this model either.

Recall from section 5.1 that every CS method has to address two problems: reconstruction
of the signal u from measurements y for a fixed design X, and the choice of the design X. In
our experiments, we pair five different reconstruction methods (L1, L1 + TV, L2, BCS, and EP;
see section 5.4) with a number of non-adaptive (rand uni, rand coloured, rand noiselet, heur
wave) and adaptive (opt free, opt wave) measurement designs. The pairings we explored are
summarised in table 5.1. For rand uni, entries are drawn uniformly at random: Xij ∼ N (0, 1

n ).
For rand coloured, filters are drawn respecting the second order structure of images. Inspired
by Wang et al. [2007], we applied a spectral low-pass filter to random Gaussian noise with a
power spectrum decaying with f−2 [Field, 1987]. For rand noiselet, we selected random rows
of the noiselet transform [Coifman et al., 2001], as was proposed for CS on images in Candès
et al. [2006]. We are grateful to Emmanuel Candès and Justin Romberg for providing us with
their noiselet transform code. Finally, heur wave is the wavelet heuristic described above. While
this heuristic is non-adaptive, in that the ordering is fixed in advance, we also considered the
adaptive variant proposed in Dekel [2008] (called heur Dekel below). We acknowledge Shai
Dekel for sharing code and knowledge with us. The adaptive designs are both sequential, in
that new rows x∗ are added to X one at a time, based on all previous measurements. In opt free,
the optimisation is done over all unit norm filters x∗, while in opt wave, each filter has to corre-
spond to a single wavelet coefficient. Note that opt wave is another adaptive alternative to the
wavelet heuristic. The database for our study is a set of 75 natural grey-scale images frequently
used in computer vision research (figure 5.3), which were scaled to 64× 64 pixels. Results are
given in the panels of figure 5.4 (legend entries have the form “reconstruction method (type of
design)”).

In the main panel a), we consider natural pairings: our Bayesian EP method, as well as
BCS, with unconstrained experimental design (opt free), and current CS reconstruction meth-

http://decsai.ugr.es/cvg/dbimagenes/g512.php
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Figure 5.4: Comparative results for the experimental design benchmark.
Experiments for measuring natural images of size 64× 64 = 4096 pixels depicted in figure 5.3.
Shown is L2-reconstruction error averaged over 75 grey-scale images (±standard error of the
mean for “∗”). Noise level σ2 = 0.005. BCS: Lp: Lp reconstruction p ∈ {1, 2}, L1 + TV: Lasso
with TV/wavelet penalties, EP: our method. True σ2 supplied, τ parameters chosen optimally
for each method individually: τW = τD = 0.075 (L1 + TV), τW = 0.075, τD = 0.5 (EP). New
rows x∗ of X random unit norm (rand), actively designed (opt), according to wavelet heuristic
(heur wave).
a) Start from m = 10 with X random uniform. b) Comparison for X drawn from different
measurement ensembles. c) Optimisation restricted to wavelet coefficients. d) Different recon-
struction methods based on same measurements (heur wave). e,f) Start from m = 100, 400 with
X according to wavelet heuristic. See table 5.1 for a complete list.
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ods (L1, L1 + TV) with randomly drawn measurement filters (rand uni). The wavelet heuristic
is paired with least squares reconstruction (L2). Note that EP(opt free) and L2(heur wave) feature
in all panels for reference. All methods in a) are started from ten initial filters drawn according
to rand uni, except for BCS(opt free), which required 100 initial filters (rand uni) to attain a decent
performance. The L2 wavelet heuristic clearly outperforms all CS methods based on random
designs. Among the latter, L1 + TV does substantially better than L1 or BCS, indicating the
importance of the total variation prior potential. This is also witnessed in the scale parameters
employed for the two potentials in EP: τW = 0.075, τD = 0.5. The total variation potential
is much stronger. In fact, the results of EP with τW = 0, τD = 0.5 are only insignificantly
worse. Note that the BCS code supplied with Ji and Carin [2007] allows for a transform spar-
sity potential only. Moreover, our method EP(opt free) outperforms the wavelet heuristic, by
selecting filters which are more informative than wavelet coefficients. Since EP(opt free) adjusts
the design X specifically for each underlying image, it is natural to ask whether such designs
are transferable to other images as well. In the setup EP(opt across), we reconstructed each im-
age u using five measurement designs X adapted to different images (randomly chosen). The
average reconstruction error is shown in a): as expected, it is slightly worse than for EP(opt
free), yet still substantially better than the L2 wavelet heuristic. Therefore, the filters found by
EP(opt free) turn out to be transferable to other images, opening up the possibility to adapt such
designs a priori. Finally, the poor performance of BCS, compared to the simpler L1 or L1 + TV,
is remarkable.

In panel b), we consider other ensembles beyond rand uni, which the designs X are drawn
from. The random noiselet ensemble rand noiselet proposed for CS in Candès et al. [2006] has the
theoretical advantage of being maximally incoherent with the Haar wavelet basis. Moreover,
X does not have to be stored explicitly in this case, and MVMs with X or X> can be computed
very efficiently. There is no significant difference between rand uni and rand noiselet for L1 +TV.
While the noiselet measurements lead to a more compact algorithm, they do not result in better
reconstructions. The coloured ensemble rand coloured results in filters more closely aligned with
the signal energy. They lead to significant improvements over the uninformed ensembles, yet
are again outperformed by the L2 wavelet heuristic.

In panel c), we compare adaptive alternatives to the wavelet heuristic. The heuristic pro-
posed in Dekel [2008] does not improve upon L2(heur wave) in our experiments. However, our
EP method significantly outperforms the heuristic, even when constrained to measure wavelet
coefficients only (see section 5.4.2). The advantage may be due to EP choosing a better ordering
of the coefficients, but also due to improved reconstruction (see also panel d). While EP(opt free)
still outperforms the constrained variant EP(opt wave), we see that the design optimisation of
our method is successful under structural constraints on the filters as well.

In panel d), we try to separate between reconstruction performance and the choice of mea-
surement design. All methods shown there use the same wavelet heuristic design (except for
EP(opt free), added for reference). First of all, L2, L1, and BCS provably give exactly the same
reconstruction, if X is a part of W. L1 + TV and EP can do significantly better based on these
measurements, while there is no significant difference between them. It is also interesting to
compare EP(heur wave) here with EP(opt wave) in panel c). The latter does slightly better, al-
though the major part of the improvement over L2(heur wave) is due to EP being a better recon-
struction method.

Intrigued by the fact that the wavelet heuristic with simple L2 reconstruction outperformed
all estimators based on random designs, we analysed their performance after giving them a
warm-start, by supplying them with the first 100 and first 400 wavelet heuristic measurements.
The results are shown in panel e) and f) respectively. In this setting, BCS with projection opti-
misation performed much worse than all other methods, the results are omitted to facilitate the
comparison among the others. L1 + TV profits from the warm-start to some extent, although
its final performance (continuing with rand uni) is worse than the L2 wavelet heuristic. Both
EP(opt free) and EP(opt wave) improve upon L2(heur wave) from the moment they are allowed to
choose filters by themselves, so the warm-start is in fact suboptimal for them. The deterioration
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of L1 is rather striking, given that additional measurements provide novel information about
the true u. The failure is analytically explained in appendix G.1.

From these results we conclude, much as Weiss et al. [2007] argued on mostly theoretical
grounds, that if natural images are to be measured successively by unit norm, but otherwise
unconstrained linear filters, drawing these filters at random leads to significantly worse recon-
structions than standard wavelet coefficient filters top-down. Moreover, the wavelet heuristic
can be improved upon by adapting filters with our Bayesian experimental design technique.
To put our findings into perspective, we note that the L2 wavelet heuristic is vastly faster to
compute8 than all other methods considered here. Another finding is that the total variation
potential seems to be more useful for natural images than the transform sparsity term. Our
Bayesian design optimisation method, based on EP, can be used under structural constraints,
and the designs can successfully be transferred to measure other images as well. CS theorems
are mathematically intriguing, and there are certainly applications that benefit from these re-
sults, but linear image measurement is probably not among them.

Possible reasons for the failure of BCS on signals that are not truly sparse, were given in
section 5.5.1. Premature sparsification, in light of not strictly sparse signals, leads to poor results
even with random X. Their covariance estimates seem too poor to steer sequential design in a
useful direction.

5.6 Discussion

We have shown how to address the CS problem with Bayesian experimental design, where de-
signs are optimised to rapidly decrease uncertainty, rather than being chosen at random. In a
study about linearly measuring natural images, we show that CS reconstruction methods based
on randomly drawn filters are outperformed significantly by standard least squares reconstruc-
tion measuring wavelet coefficients in a fixed ordering from coarse to fine scales. Our findings
suggest that the impact of CS theoretical results to natural image applications should be recon-
sidered. We also show that our Bayesian sequential design method, starting from a model with
little domain knowledge built in, is able to find filters with significantly better reconstruction
properties than top-down wavelet coefficients. Our findings indicate that efficient Bayesian
experimental design techniques such as ours should be highly promising for CS applications
in general.

Our best explanation for the differences between theory and what is found in natural im-
age applications, is based on the explicit worst-case character of the theorems: while the signal
is assumed to be sparse in some transform domain, no assumptions are made about where the
non-zeros lie. Moreover, the statements are usually of the minimax type, bounding the perfor-
mance or success probability under the worst possible placing of the non-zero set. It is reassur-
ing that random measurements and simple convex estimation methods are sufficient to give
useful results within broad regimes of such a pessimistic setting. The impact in applications,
where high standards of security have to be met, or where adversarial signal constructions
have to be detected, may be substantial. However, in practical statistics, worst-case results are
often not transferable to “cases of practical interest”. While it is easy to see that experimen-
tal design can fail badly in the worst case, a proper implementation often leads to significant
cost reductions for non-adversarial tasks, whose properties can be modelled well. In minimax
techniques, available prior knowledge can often be ignored, because the worst case may just
as well be very unexpected. Moreover, making decisions about future sampling based on data
observed so far, is usually not useful, because the “benign” assumptions underlying these tech-
niques are violated in the worst case. It is therefore not reasonable to conclude from minimax
results, or from results assuming the absence of any structure except for sparsity, that methods
which perform close to optimal in these cases, set the standard in practise as well. In fact, while

8EP sequential design is still very efficient. A typical run on one image took 53 minutes (on 64bit 2.33GHz AMD),
for n = 4′096 and q = 12′160 potentials: 16′785 initial EP updates, then 308 increments of X by 3 rows each, with on
average only 8.8 potential updates needed to regain EP convergence (up to 85 updates after some increments).
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minimax CS theory requires X and B to be as “incoherent” w.r.t. each other as possible [Candès
et al., 2006], and some methods strive for maximally incoherent designs [Elad, 2007, Candès
et al., 2006], on natural images, these methods are significantly outperformed by using wavelet
coefficients in a certain ordering. The latter filters are rows of B, therefore maximally coherent
with the sparsifying transform. If wavelet coefficients were sparse at random for the ensemble
of natural images, incoherence would indeed be an important property of a measurement de-
sign. Since the sparsity of images is structured in a stable way, the completely coherent wavelet
heuristic performs much better than worst-case optimal incoherent designs.

Our experience with the method of Ji and Carin [2007], which we compare against in our
study, raises another interesting question. Several signal processing and machine learning
methods try to detect sparsity early on for computational efficiency. Sparse Bayesian learn-
ing [Tipping, 2001] is more aggressive in this respect than our EP method here. Early spar-
sification seems to not hurt mean prediction performance much. However, our experiences
indicate that it is the covariance (or uncertainty) estimates that can be badly hurt by sparsity-
by-elimination, and that in contexts such as experimental design, where covariances are more
important than predictive means, they should be avoided. The challenge is to develop meth-
ods that run efficiently without eliminating many variables early on, and our selective potential
updating method for EP is a step in that direction.



Chapter 6

Magnetic Resonance Imaging Sequence
Optimisation

Magnetic resonance imaging (MRI) is one of the most widely used medical imaging modalities
and offers excellent soft tissue resolution without exposing the patient to unhealthy radiation.
Most of the research effort today aims at increasing the spatial and temporal resolution by opti-
mising the scanner hardware and the MR measurement sequence. Another recent approach to
speed up MRI undersamples the signal and uses sparse estimation algorithms for faithful image
reconstruction from incomplete measurements [Lustig et al., 2007]. Sparse estimation algo-
rithms exploit stable low-level statistical properties that strongly constrain the class of proper
images: unlike random noise, natural and medical images are defined by edges and smooth
areas. While the majority of clinically used sequences have a reconstruction cost of a single fast
Fourier transform (FFT), iterative sparse reconstruction techniques require several of these: in
a nutshell, sparse reconstruction algorithms trade faster measurements against higher compu-
tational load afterwards.

A different, but related and more difficult problem is to design and improve the under-
sampling sequences, producing the data for subsequent sparse reconstruction, themselves. We
describe a Bayesian method, that maintains a posterior distribution over images that quantifies
the uncertainty attached to the image; we view image reconstruction as an inference problem
from incomplete noisy information starting from a non-Gaussian prior distribution that cap-
tures low-level spectral and local natural image statistics. The posterior is used to judge the
quality of the current sequence and the expected improvement after alteration: we sequen-
tially modify the sequence to decrease uncertainty in regions or along directions of interest.
Importantly, we do not need to run MRI experiments to score the possible modifications – this
is done by our probabilistic computational model.

Based on theoretical results, it has been proposed to design sequences by randomising as-
pects thereof [Lustig et al., 2007]. Beyond being hard to achieve on a scanner, our results in-
dicate that randomised measurements do not work well for real MR images. Similar negative
findings for a variety of natural images were also given in chapter 5. Our algorithm enables
efficient Bayesian inference computations for MR images of realistic resolution. The inference
problem is reduced to numerical mathematics primitives, and further to matrix-vector multi-
plications (MVM) with large, structured matrices, which are computed by efficient signal pro-
cessing code. Based on raw data from a 3T MR scanner, we apply our sequence optimisation
approach to the design of Cartesian and spiral trajectories, achieving a scan time reduction of
a factor larger than two in either case, compared to full sampling. We find that we can indeed
improve MRI sequences through the optimisation of Bayesian design scores. Most notably, the
improvement transfers to unseen images, which allows to decouple the sequence optimisation
and the actual usage of the sequence. Our framework is generic and can be applied to arbi-
trary trajectory classes, to multi-slice design optimisation [Seeger, 2010b], and to designs with
multiple receiver coils.

The general algorithmical idea for approximate inference and experimental design is based
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on a conference paper [Seeger, Nickisch, Pohmann, and Schölkopf, 2009]; a longer journal paper
[Seeger, Nickisch, Pohmann, and Schölkopf, 2010] contributes thorough validation experiments
and more MRI material to the chapter.

In section 6.1, we start by introducing the problem of speeding up the MRI acquisition
process and some recent efforts exploiting redundancies in the underlying image. We then
review basic facts about the MRI measurement process and abstractly introduce the Bayesian
design methodology to optimise the measurement process. Later, in section 6.2, we instantiate
the probabilistic model using a Gaussian likelihood and a sparse image prior followed by a
discussion of point spread functions in linear and nonlinear imaging systems. The inference
algorithm is described in section 6.3 starting from a highlevel overview down to a detailed
description and some interesting insights. Finally, section 6.4 provides empirical results for
Cartesian and spiral measurement trajectories validating our approach to sequence optimisa-
tion. Conclusion and perspectives are given in section 6.5.

6.1 Introduction

Magnetic resonance imaging (MRI) [Lauterbur, 1973, Garroway et al., 1974], as a key diagnos-
tic technique in healthcare nowadays, is also of central importance to experimental research of
the brain. Without applying any harmful ionising radiation, this technique stands out by its
amazing versatility: by combining different types of radio frequency irradiation and rapidly
switched spatially varying magnetic fields (called gradients) superimposing the homogeneous
main field, a large variety of different parameters can be recorded, ranging from basic anatomy
to imaging blood flow, brain function or metabolite distribution. For this large spectrum of
applications, a huge number of sequences has been developed that describe the temporal flow
of the measurement, ranging from a relatively low number of multi-purpose techniques like
FLASH [Haase et al., 1986], RARE [Hennig et al., 1986], or EPI [Mansfield, 1977], to specialised
methods for visualising bones UTE [Robson et al., 2003], SWIFT [Idiyatullin et al., 2006] or per-
fusion CASL [Williams et al., 1992]. To select the optimum sequence for a given problem, and to
tune its parameters, is a difficult task even for experts, and even more challenging is the design
of new, customised sequences to address a particular question, making sequence development
an entire field of research [Bernstein et al., 2004]. The main drawbacks of MRI are high ini-
tial and running costs, since a very strong homogeneous magnetic field has to be maintained,
moreover long scanning times due to weak signals and limits to gradient amplitude.

With this in mind, by far the majority of scientific work on improving MRI is motivated by
obtaining diagnostically useful images in less time. Beyond reduced costs, faster imaging also
leads to higher temporal resolution in dynamic sequences for functional MRI (fMRI), less an-
noyance to patients in cardiac examinations or angiography, and fewer artifacts due to patient
motion. One way of dealing with the need for rapid scanning are alternative encoding strate-
gies, making use of multiple receiver coils [Sodickson and Manning, 1997, Pruessmann et al.,
1999, Griswold et al., 2002] in order to parallelise the measurement process to some degree.

6.1.1 Compressed sensing

While parallel MRI exploits redundancies between several receiver channels, imaging speed
can also be increased by taking advantage of redundancies in the signal itself, which allows to
reconstruct the image from only a part of k-space in the first place. In MRI, the term k-space
denotes the spatial frequency domain or Fourier representation of the image. For example, k-
space measurements of real-valued signals show approximately Hermitian symmetry, which
is exploited in partial Fourier acquisition techniques [McGibney et al., 1993]. Far beyond these
simple symmetries, images form a statistically tightly constrained signal class. Fast, efficient
digital image and video compression techniques are routinely used today, and the principles
underlying them hold much promise for undersampled high resolution MRI reconstruction
[Weaver et al., 1991, Marseille et al., 1996, Wajer, 2001, Lustig et al., 2007], if this process is



6.1. INTRODUCTION 105

understood in terms of nonlinear statistical estimation.
These ideas are known as compressed sensing [Candès et al., 2006, Donoho, 2006a] or sparse

reconstruction, since they exploit the statistical sparsity of images, a robust low-level character-
istic, which leads to nonlinear, yet conservative and well-characterised interpolation behaviour
[Weaver et al., 1991]. Compressed sensing is increasingly used for MRI problems, such as dy-
namic [Gamper et al., 2008] and spectroscopic imaging [Hu et al., 2008], as well as for spiral
[Santos et al., 2006] and radial undersampling [Ye et al., 2007, Block et al., 2007]. Typically, scan
time reductions by a factor of two or more can be achieved without losses in spatial resolution
or sensitivity. Sparse statistics of images or image series originate from the structure of their
pixel representations; an important instance is spatial or temporal redundancy, which has been
used to speed up MRI acquisition [Korosec et al., 1996, Madore et al., 1999, Tsao et al., 2003,
Mistretta et al., 2006].

Two problems arise in practical applications of compressed sensing: how to reconstruct an
image from a fixed undersampling design, and how to choose the design in the first place.
While a large amount of work was done for the former, we are not aware of much progress
for the latter. Although there is substantial prior work on k-space optimisation [Greiser and
von Kienlin, 2003, von Kienlin and Mejia, 1991, Spielman et al., 1995], this has been done for
linear reconstruction (section 6.2.1), neglecting image sparsity (section 6.2.2). As we demon-
strate here, it pays off to match the k-space trajectory to the sparse reconstruction technique.
Established concepts such as the point spread function (section 6.2.3), tailored to linear recon-
struction, do not capture the inherent dependence of sparse (nonlinear) estimation algorithms
on the acquired signal. The latter cannot improve upon the Nyquist limit uniformly, but only
for statistically sparse signals, and successful nonlinear k-space optimisation has to take this de-
pendence into account. We phrase k-space optimisation as a problem of experimental design,
and propose an algorithm based on Bayesian inference, where statistical sparsity characteristics
of images are incorporated by way of a prior distribution. The application of this procedure
to high resolution MR images becomes feasible only with the scalable inference algorithm of
chapter 3.

Properties of measurement designs for nonlinear sparse reconstruction have been evaluated
empirically in Marseille et al. [1996] for Cartesian trajectories, and in [Wajer, 2001, section 6] for
radial and spiral trajectories. They focus on non-convex image reconstruction and search for
good designs by undirected random exploration, which is unlikely to cover the design space
properly. In contrast, we employ the full Bayesian posterior in order to direct our search in a
powerful and easily configurable manner. Before we sketch our Bayesian approach to k-space
optimisation, we will introduce some MRI terminology and background.

6.1.2 MRI measurement process

An MR scanner acquires Fourier coefficients Y(k) at spatial frequencies k (the 2d Fourier do-
main is called k-space) of the proton density U(r) of an underlying object along smooth tra-
jectories k(t) determined by magnetic field gradients g(t) as summarised in figure 6.1. The
gradient control flow g(t) in combination with other scanner parameters is called sequence. Its
cost is dominated by how long it takes to obtain a complete image, depending on the number
of trajectories and their shapes. Gradient amplitude and slew rate constraints due to hardware
enforce smooth trajectories.

• In Cartesian sampling, trajectories are parallel equispaced lines in k-space, so the FFT can
be used to switch between Y(k) and U(r).

• Spiral sampling offers a better coverage of k-space for given gradient power, leading to
faster acquisition. It is often used for dynamic studies, such as cardiac imaging and fMRI.
However, since k-space is non-equispacedly covered, we cannot use the FFT algorithm to
switch between Y(k) and U(r).

Since the Fourier transformation is a linear operation, the measured data y is – except for noise
– a linear function (depending on the trajectory k(t)) of the underlying object u. Formally,
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Figure 6.1: MRI signal acquisition
Left: the (proton density of the) underlying object U(r) in 2D pixel space (indexed by r). Mid-
dle: the Fourier representation of U(r) in Fourier space is called k-space representation of the
signal Y(k). An MR scanner measures along smooth trajectories in k-space (white line). Right:
trajectories are obtained by means of spatial magnetic field gradients varying over time. Both
Fourier locations k and spatial locations r are seen as ∈ R2 or ∈ C.

a trajectory k(t) leads to data y = Xku, where Xk = [e−i2πr>j k(t`)]`j is a Fourier matrix. We
use gridding interpolation1 with a Kaiser-Bessel kernel [Bernstein et al., 2004, chapter 13.2] to
approximate an MVM with Xk, which would be too expensive otherwise. The matrix Xk is
approximated by CFD, where C is a banded matrix, F is the orthonormal equispaced Fourier
matrix and D is diagonal allowing for fast multiplications. As for other reconstruction methods,
much of our running time is spent in the gridding (MVMs with Xk and XH

k ).
In theory, the true proton density image utrue is real-valued; in reality, due to resonance

frequency offsets, magnetic field inhomogeneities, and eddy currents [Bernstein et al., 2004,
chapter 13.4], the reconstruction contains a phase ϕ(r). It is common practise to discard ϕ after
reconstruction leaving the absolute value |utrue| unchanged. Short of modelling a complex-
valued u, we correct for low-frequency phase contributions by a cheap pre-measurement. We
sample the centre of k-space on a p× p Cartesian grid, obtaining a low-resolution reconstruc-
tion by FFT, whose phase ϕ̃ we use to correct the raw data. We tried p ∈ {16, 32, 64} (larger p
means better correction), results below are for p = 32 only. While reconstruction errors gen-
erally decrease somewhat with larger p, the relative differences between all settings below are
insensitive to p. From the corrected raw data, we simulate all further non-Cartesian measure-
ments under different sequences using gridding interpolation.

With the MR terminology in place, we can now look at our approach to optimise the se-
quence k and the measurement design Xk. We write X for short if k is clear from the context.

6.1.3 Bayesian k-space optimisation

Within a class of measurement designs X of equal acquisition cost, which of them leads to the
most successful sparse reconstruction of MR images u? While this question has been addressed
satisfactorily for linear reconstruction, by the concept of point spread functions, we are not
aware of a theory for the nonlinear sparse counterpart. Properties of nonlinear reconstruction
are fundamentally signal-dependent, and to our knowledge, no theory at present captures the
signal class of high-resolution MR images properly.

Optimising a measurement design X involves decisions from imperfect information with
a quickly growing number of options to choose from. The basic rationale in the following is

1Nonequispaced fast Fourier transform (NFFT): http://www-user.tu-chemnitz.de/~potts/nfft/

http://www-user.tu-chemnitz.de/~potts/nfft/
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Figure 6.2: Application of experimental design to MRI
Image acquisition using an MR scanner, either by a medical doctor for diagnostic purposes
or a researcher in a patient study for scientific reasons, is an interactive process. The scanner
1) measures Fourier coefficients y of the proton density u of the tissue under investigation
2), which can be formalised by a likelihood function P(y|u). In addition to the data y, one
can use prior knowledge 3) given by a distribution P(u) as an auxiliary input. The internal
representation of uncertainty about the image 4) in terms of a posterior distribution P(u|y) can
be used to derive decisions ranging from refining the image (change the design) or a diagnosis.

to trade expensive computations on computers against human time in decision making under
uncertainty.

We develop a variant of Bayesian sequential experimental design (or Bayesian active learn-
ing) in this section, in order to optimise k-space sampling automatically from data, specifically
for subsequent sparse reconstruction. As illustrated in figure 6.2, the key idea is to monitor the
posterior distribution P(u|y), the Bayesian representation of remaining uncertainty in the im-
age reconstruction, as the design X is sequentially extended. Sampling trajectories in most MRI
sequences are composed of smooth elements, such as spiral or radial interleaves, or Cartesian
phase encodes. Our design algorithm sequentially operates on a candidate set C = {X∗} of
such elements, and appends in each round the element X∗, which leads to the largest expected
reduction in posterior uncertainty to the design X as outlined in algorithm 6.1.

The selection criterion or design score we employ is the information gain IG(X∗; P(u|y))
(see chapter 2.26), quantifying the amount of reduction in posterior entropy due to the mea-
surement of an additional phase encode X∗. More precisely, it quantifies the difference in un-

Algorithm 6.1 Bayesian design optimisation algorithm
Require: Candidate set C of elements (interleaves, phase encodes). Initial design X, measure-

ment y, corresponding posterior P(u|y).
repeat

(1) Compute score values IG(X∗; P(u|y)) for all candidate elements X∗ ∈ C.
(2) Append winning candidate X∗ to X, and remove it from C.
(3) Acquire measurement y∗ corresponding to X∗, append it to y.
(4) Recompute novel posterior P(u|y).

until X has desired size and u desired quality
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Figure 6.3: Bayesian experimental design on sagittal head scan data for spiral sequences.
Five spiral interleaves of the ground truth image (panel a, red dots) have already been mea-
sured. The current MAP reconstruction (from the 5 interleaves in X, y) with respect to the
ground truth (panel k) is shown in panel i) along with the reconstruction error.
The score values IG(X∗; Q(u|y)) for our 256 candidate spirals with outgoing angle θ0 ∈ 2π ·
[0..255]/256 are visualised by panels a) and b). Panels c–h) show MAP reconstructions from
different design extensions X ∪ X∗, i.e. 6 interleaves (panel a, cyan dots). Shown are residuals
|u∗ − utrue| for reconstructions u∗, L2 error lower left. Top scorer (panel a, green stars) in panel
d) gives best reconstruction after extension, due to most information gained. Nontrivial score
curve witnesses signal dependence of design optimisation problem.

certainty between the present state of knowledge P(u|y) and the refined state P(u|y, y∗) after
a novel measurement y∗ at X∗. A natural measure for the amount of uncertainty in a distri-
bution P(u) is the differential entropy H[P(u)] = −

∫
P(u) log P(u)du, based on which the

information gain is defined as

IG(X∗; P(u|y)) := H[P(u|y)]−
∫

P(y∗|y)H[P(u|y, y∗)]dy∗, (6.1)

where the expectation w.r.t. P(y∗|y) =
∫

P(u|y)P(y∗|u, y)du is required, since the particular
outcome y∗ for a candidate X∗ is unknown at scoring time. Neither the posterior P(u|y) nor
the score values IG(X∗; P(u|y)) can be computed in closed form; they are approximated by a
tractable Q(u|y) = N (u|m, V) and IG(X∗; Q(u|y)).

Our sequential algorithm (visualised in figure 6.3) provides a goal-directed way to opti-
mise k-space sampling. In each round, only a single new real measurement is required, while
the effective search space, the set of all combinations of candidates, has exponential size in
the number of rounds. This characteristic sets it apart from blindly randomised approaches,
which explore the search space in stochastic, non-adaptive patterns, and tend to use many
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more real measurements than rounds. In practise, our algorithmic scheme has to be adjusted
to constraints coming from the MR scanner setup.

Up to now, the distributions P(u) and P(y|u) have not been further specified. The next sec-
tion instantiates our probabilistic model and discusses estimation or reconstruction techniques.

6.2 Probabilistic model

In the following, we introduce the Gaussian likelihood (section 6.2.1) and describe the sparse
image prior (section 6.2.2) along with several estimators for reconstruction. Further, we provide
background on point spread functions (PSF) for linear and nonlinear reconstructions (section
6.2.3). The probabilistic model is the same as in chapter 5.2, with the exception that the involved
variables are defined over the complex numbers rather than the reals. Therefore, at the expense
of being slightly redundant, we restate relevant fact to make the section more readable.

6.2.1 Gaussian likelihood and linear reconstruction

Let u ∈ Cn represent the unknown pixelised MR image to be reconstructed, where n is the
number of pixels. MR measurements y, linearly depending on the proton density of the object
u, (see section 6.1.2) are modelled as

y = Xu + ε, <(ε), =(ε) ∼ N (0, σ2I), ε ∈ Cm,

where ε accounts for measurement errors, and z = <(z) + i=(z) ∈ C, i =
√
−1, [<(z),=(z)] ∈

R2. The design or measurement matrix X ∈ Cm×n contains Fourier filters at certain k-space
points, and m is the number of k-space measurements taken. Standard linear reconstruction
(chapter 2.6), maximises the Gaussian likelihood P(y|u) = N (y|Xu, σ2I) as a function of the
bitmap u. The maximum likelihood (ML) or equivalently ordinary least squares (OLS) estima-
tor

ûML = ûOLS = arg min
u
‖Xu− y‖2 (i)

= X+y
(ii)
= XH(XXH)−1y

is linear in the measurements y and most appropriate for full-rank measurement designs X.
Low-rank designs X with m < n correspond to undersampling, i.e. reconstruction from incom-
plete measurements leaving the OLS estimator underdetermined by m− n degrees of freedom.
A widely used additional constraint is to select u with minimal norm as implemented by the
pseudo-inverse in equality (i), i.e. ûOLS = arg min{‖u‖2 , Xu = y}. The identity (ii) is only
sensible for full rank matrices XXH ∈ Cm×m, m ≤ n.

In Cartesian imaging, k-space is sampled on a rectangular equispaced grid. If all of k-space
is acquired, X equals the orthonormal Fourier matrix F. The estimator ûOLS is obtained by a
single inverse FFT since X+ = F+ = F−1 = FH. For undersampled Cartesian measurements we
have X = SF, where S ∈ {0, 1}m×n is a diagonal selector matrix leading to X+ = FHFHS>.

In spiral or radial imaging, where the measurements are not lying on an equispaced grid, one
usually approximates X ≈ CFD, where D is a diagonal weighting matrix and C is a banded
interpolation matrix using Kaiser-Bessel windows [Bernstein et al., 2004, chapter 13.2]. Compu-
tation of ûOLS amounts to solving the normal equations XHXûOLS = XHy by an iterative method
like the conjugate gradient based LSQR algorithm2 [Paige and Saunders, 1982]. A simpler linear
reconstruction uses the so called zero filling density compensation (ZFDC3) [Bernstein et al.,
2004, chapter 13.2.4] estimator

ûZFDC = XHGky,

where G is a diagonal weighting matrix compensating for sampling density differences in k-
space. One commonly uses the area of the tiles of a Voronoi tessellation of k-space, where the
centres correspond to the sampling points in k-space to re-weight the measurements y. The

2Available from http://stanford.edu/group/SOL/software/lsqr.html.
3Code at www.stanford.edu/~mlustig/SparseMRI.html.

http://stanford.edu/group/SOL/software/lsqr.html
www.stanford.edu/~mlustig/SparseMRI.html
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Figure 6.4: Transform sparsity in images
Multiscale gradients of natural and medical images show a particular structure: their histogram
has heavy tails and a sharp peak at zero allowing for sharp edges and smooth surfaces simul-
taneously. For comparison, we show a Gaussian distribution; in our experiments we use the
Laplace potential – a tractable compromise.

estimator ûZFDC can be understood as an approximation to ûOLS, where the diagonal matrix Gk
replaces (XXH)−1.

Neither of the described techniques can deal with undersampled data but all of them are
linear in the measurements. Furthermore, ûZFDC and Cartesian ûOLS are computationally ex-
tremely attractive because they require only a single MVM with XH, which is the main reason,
why these two linear reconstruction methods are predominantly used in practise. In order to
improve upon the discussed estimation schemes one can take signal class knowledge in form
of a prior probability distribution P(u) over bitmaps into account.

6.2.2 Sparsity of MR images and nonlinear reconstruction

A prior is a preference weighting factor, unrelated to the measured data, assigns low density
to noise bitmaps and high density to bitmaps in agreement with knowledge about MR images.
The vast majority of possible bitmaps do not constitute valid MR images, which are statistically
tightly constrained. On a low level, images exhibit sparsity: coefficients s = Bu in linear trans-
form spaces have super-Gaussian distributions (see Simoncelli [1999] and figure 6.4). Besides
strong pixel correlations, the low entropy of the super-Gaussian distributions are responsible
for the high compression rates achieved by modern schemes such as JPEG. Sparsity is a robust
property of non-synthetic images, coming from structure (edges, smooth areas, textures) not
present in noise. Among many sparsity-enforcing potentials, Laplace potentials

Tj(sj) ∝ e−(τj/σ)|sj|, τj, σ > 0

with scaling parameters τj/σ stand out: they are the best compromise between a close match to
natural images statistics (as in figure 6.4) and analytic and algorithmic tractability in inference
and estimation. Most prominently,− ln Tj(sj)

c
= (τj/σ)|sj| is convex, so that the MAP estimator

ûMAP can be computed as a convex program [Tibshirani, 1996].
Our sparse image prior P(u) collects all super-Gaussian potentials P(u) ∝ ∏

q
j=1 Tj(sj) =

exp(−‖τ � (Bu)‖1 /σ), where s = Bu ∈ Cq consists of linear filter responses, with B ∈ Rq×n:
the image gradient (horizontal and vertical discrete first derivatives; also called total variation
coefficients), and coefficients for an orthonormal multi-scale wavelet transform (Daubechies 4,
recursion depth 6), a total of q ≈ 3 · n Laplace potentials as illustrated in figure 6.5.

The combination of a sparsity prior P(u) and a Gaussian likelihood P(y|u) = N (y|Xu, σ2I)
form a sparse linear model (SLM), due to the linear measurements and the sparsity enforcing
prior. Combining these two terms by Bayes’ rule, we have

P(u|y) ∝ P(y|u)P(u),

where P(u|y) is the Bayesian posterior distribution, the canonical combination of measure-
ment data and prior knowledge by rules of probability. Both prior P(u) and posterior P(u|y)
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waveletgradientimage

Figure 6.5: Sparsity prior on MR image
Both finite differences and wavelet coefficients of natural and also medical images are sparse.
Therefore, our image prior encodes precisely that low-level information. The wavelet trans-
form W can be understood as gradient on larger scales. Therefore, B = [D>, W>]> computes
multiscale derivatives of the image and our prior can be seen as favouring mainly smooth im-
ages containing occasionally some edges.

are distributions over bitmaps, representing our knowledge about the image before and after
measurements have been obtained. In sparse reconstruction techniques, the posterior is opti-
mised, instead of the likelihood alone. The prominent MAP (maximum a posteriori) estimation
algorithm, seeks the mode of the posterior

ûMAP = arg max
u

P(u|y) = arg min
u
{− ln P(y|u)− ln P(u)}, (6.2)

which exactly corresponds to the sparse reconstruction method of Lustig et al. [2007]. In order
to favour a u that is close to real-valued, we make use of n additional Laplace potentials on
=(sj), as in Block et al. [2007], but not in Lustig et al. [2007]. Since sj ∈ C is represented by
[<(sj),=(sj)] ∈ R2 internally, this amounts to a simple extension of B. The MAP reconstruction
process, which is nonlinear due to the non-Gaussian prior P(u), is illustrated in Lustig et al.
[2007, figure 2]. As opposed to the maximum likelihood estimator, ûMAP cannot be found by
a single linear system, but requires iterative computation. In our SLM setting, it is the unique
minimiser of a convex criterion, and efficient MAP algorithms are available [Chen et al., 1999,
Tibshirani, 1996].

In the context of reconstruction of undersampled signals m < n, the prior imposes a struc-
ture on the space of possible signals u that could have generated the measurements y. Conse-
quently, prior knowledge allows to reconstruct MR images from measurements far below the
Nyquist limit.

In our experiments, scale parameters τj are shared among all potentials of the same kind,
but we allow for different values in wavelet coefficient, total variation, and imaginary part
potentials. While Bayesian inference is approximated over primary parameters u, hyperpa-
rameters τj, σ2 are estimated in general. In our experiments, we optimised them on data not
used for comparisons, then fixed these values for all subsequent sampling optimisation and
MAP reconstruction runs. We selected the τW/τD scale parameters optimally for the Nyquist
spiral Xnyq, and set σ2 to the variance of Xnyq(utrue − |utrue|).

6.2.3 Point spread functions and experimental design

The concept of a point spread function (PSF) or impulse response function êi is a very helpful
tool to describe and analyse linear (imaging) systems. Denote the imaging system by ς, the
object under investigation by u ∈ Cn and the estimated image by û ∈ Cn. By virtue of linear-
ity, the outcome of a linear superposition of objects u1 and u2 equals the superposition of the
individual estimates û1 and û2

ς(λ1u1 + λ2u2) = λ1ς(u1) + λ2ς(u2) = λ1û1 + λ2û2.
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Estimator Symbol Reconstruction operator R
û = Ry Cartesian Non-Cartesian

Maximum likelihood, ordinary least squares ûML = ûOLS FHS> XH(XXH)−1

Zero filling density compensation ûZFDC FHS>Gk XHGk
Variational Bayesian mean ûVB RVB

y = (XHX + BHΓ−1
y B)−1XH

Maximum a posteriori, penalised least squares, p = 2 ûMAP = ûPLS
(
XHX + γ−1BHB

)−1 XH

Maximum a posteriori, penalised least squares, p 6= 2 ûMAP = ûPLS = arg minu ‖Xu− y‖2
2 + γ−1 ‖Bu‖p

p

Table 6.1: Reconstruction operators for different estimators

Furthermore, linear systems ς can be represented by a matrix S ∈ Cn×n: û = ς(u) = Su.
In our image measurement application, S naturally decomposes into a measurement X and
reconstruction operator R, S = RX. A system S is linear if and only if R does not depend on
y. Table 6.1 summarises several linear and nonlinear reconstruction operators frequently used
in MRI reconstruction as introduced in sections 6.2.1 and 6.2.2. We normalise the rows xi of X
to unit length ‖xi‖ = 1 to remove the scaling ambiguity between R and X if S is kept constant.
Now, we can represent the underlying object u = ∑n

i=1 uiei in the standard basis with unit
vectors ei, apply the system function ς and use linearity to see that the estimated image

û = ς(u) = ς

(
n

∑
i=1

uiei

)
=

n

∑
i=1

uiς(ei) =
n

∑
i=1

uiêi

is a weighted sum of impulse responses or point spread functions êi independent of the mea-
surements y. To understand what the imaging system ς is doing, one simply needs to know
all PSFs. Furthermore, the quality or resolution of an imaging system can be quantified by the
deviation ∆(X) = ∑i ‖êi(X)− ei‖ – a perfect imaging system has R = X−1 ⇔ S = I and there-
fore no resolution is lost since u = û. More precisely, the off-diagonal elements S can be used
to quantify, how much resolution is lost. As a result of the linearity, the measurement process
X and reconstruction process R do not depend on the signal u; the system does not distinguish
between random noise inputs and proper MR images. Furthermore, undersampling X ∈ Cm×n

with m < n necessarily leads to a loss in resolution because X cannot be inverted.
The deviation ∆(X, X∗) is a measure for the resolution of the imaging system. Consequently

selecting X∗ according to ∆(X, X∗) is a very promising criterion for experimental design.
Nonlinear systems, however, are much more difficult to characterise because their behaviour

can be qualitatively different depending on the input. In MRI imaging systems ς, the noisy
measurement y are linearly related to u by the measurement design X, however the reconstruc-
tion û = ρ(y) can be nonlinear. Both the MAP estimator

ûMAP = ρMAP(y) = arg min
u
‖Xu− y‖2

2 + γ−1 ‖Bu‖p
p , p 6= 2

(section 6.2.2 and table 6.1) and the VB (variational Bayesian) mean estimator

ûVB = ρVB(y) = RVB
y y =

(
XHX + BHΓ−1

y B
)−1

XHy, γy = arg min
γ

φ(γ, y)

(section 6.3 and table 6.1) are nonlinear reconstructions ρ(y) rendering the entire imaging sys-
tem nonlinear. The PSFs êi = ρ(Xei) (they are called transform point spread functions in Lustig
et al. [2007]) do not satisfactorily characterise the system since they depend nonlinearly on the
measurements. For example, in the SLM, we have ûMAP = u for many piecewise constant im-
ages [Lustig et al., 2007], whereas random noise bitmaps u are very unfaithfully reconstructed.
In contrast to the linear case, this renders the deviation ∆(X, x∗) useless. Therefore, we will use
the information gain criterion IG(X∗; P(u|y)) of section 6.1.3 for experimental design.
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6.3 Variational inference

In order to compute design score values IG(X∗; P(u|y)), we have to integrate over the poste-
rior P(u|y). These computations, referred to as Bayesian inference, cannot be done exactly in
the case of sparse linear models. We use the algorithm of chapter 3.5 for SLM approximate
inference, which scales up to high-resolution MR images, while being accurate enough to suc-
cessfully drive nonlinear design optimisation. The intractable posterior P(u|y) is fitted by a
Gaussian distribution Q(u|y), with the aim of closely approximating the posterior mean and
covariance matrix. Fitting amounts to a convex optimisation problem with a unique solution.

In the following, we discuss the general idea of the inference procedure, then we look into
details of the optimisation, especially the Lanczos marginal variance estimation. Finally, we
discuss sparse and least squares estimation as special cases of variational Bayesian mean esti-
mation and reveal insightful links between the estimation techniques.

6.3.1 Highlevel overview

We employ the variational relaxation introduced in chapter 3 because the associated algorithm
is scalable. The posterior P(u|y) is approximated by the closest Gaussian distribution Q(u|y)
from a large approximation family. Since integrations against Gaussian densities are tractable
even in high dimensions, the replacement P(u|y) → Q(u|y) allows for design score computa-
tions on a large scale.

Our prior P(u) as discussed in section 6.2.2 is a product of super-Gaussian Laplace poten-
tials, each of which can be tightly lower bounded by Gaussian functions of any variance (see
figure 3.2). We use this property to choose the approximation family, and to formulate the vari-
ational problem. For the former, we start with P(u|y), but replace each prior potential by a
Gaussian lower bound centred at zero. The variances γ = [γj]j ∈ R

q
+ of these replacements

parametrise the Gaussian family members Q(u|y; γ). For the variational criterion φ(γ), we
apply the same replacement to the log partition function

ln P(y) = ln
∫

P(y|u)P(u)du, (6.3)

the approximation target in most variational inference methods (posterior moments, such as
mean and covariance, are obtained as derivatives of ln P(y)) [Jordan, 1997], leaving us with a
lower bound −φ(γ)/2 ≤ ln P(y), which can be evaluated as a Gaussian integral. The larger
the lower bound, the tighter is the fit of Q(u|y) to P(u|y) since 2φ(γ) + ln P(y) is a convex
upper bound to the Kullback-Leibler divergence KL[Q(u|y) ‖P(u|y)], a standard measure for
the difference between two distributions [Cover and Thomas, 2006].

We established in chapter 3.4 that the variational inference problem minγ φ(γ) is convex:
there is a single best Gaussian fit Q(u|y) to P(u|y). Moreover, we proposed a double loop algo-
rithm to find the minimum point of φ, rapid enough to address the k-space optimisation prob-
lem. Revisiting algorithm 6.1, we obtain our method in practise by replacing P(u|y)→ Q(u|y),
which is fitted before starting the design loop, and refitted to the extended posterior at the
end of each round, in step (4). The optimisation is reduced to calling primitives of numerical
computing a moderate number of times: reweighted least squares estimation, and approxi-
mate eigendecomposition. While the former is routinely used for linear and nonlinear MRI
reconstruction, the latter seems specific to the inference problem and is required in order to
approximate posterior covariances. These are further reduced, by standard algorithms of nu-
merical mathematics, to signal processing primitives such as fast Fourier transform (FFT) or
non-equispaced fast Fourier transform (NFFT).

6.3.2 Experimental design details

Once P(u|y) is replaced by its closest Gaussian fit Q(u|y; γ), the design score (6.1) can be com-
puted (step (1) in algorithm 6.1). However, k-space optimisation comes with large candidate
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φ(γ) =

Inner loop: γ← (στ)−1 �
√

σ2z + s2, s = Bu∗ b)

u∗ ← arg minu
1

2σ ‖y− Xu‖2 + τ>
√

σ2z + s2 c)︷ ︸︸ ︷
Outer loop:

z← dg
(

BA−1
γ B>

)
, a)︷ ︸︸ ︷

min
z�0

z>γ−1 − φ∗∩(z)

Aγ = XHX + B>Γ−1B︷ ︸︸ ︷
γ>τ2 − σ−2yHXA−1

γ XHy + σ−2yHy

q + q
ln |Aγ|︸ ︷︷ ︸

φ∩(γ−1) concave in γ−1

also convex in γ

γ>τ2 + σ−2 min
u
‖y− Xu‖2 + sHΓ−1s︸ ︷︷ ︸

φ∪(γ) convex in γ

Figure 6.6: Double loop variational inference algorithm for MRI
In approximate inference, the (convex) variational criterion φ(γ) is minimised by decomposing
it into a coupled φ∩(γ−1) and a decoupled part φ∪(γ). The coupled part is concave and can
therefore be upper bounded by a (decoupled) linear function a) leading to the outer loop step
of the algorithm. The (decoupled) surrogate objective φz(γ, u) = z>γ−1 + φ∪(γ) is minimised
in the inner loop b) + c). First, the minimisation in γ can be done analytically b) leaving us
with a penalised least squares problem c). We iterate between inner and outer loop updates
until convergence.

elements X∗ ∈ Cd×n (the spiral interleaves used in our study consist of d = 3216 k-space points,
hence X∗ ∈ C3216×n, n = 2562), and if many of these candidates are to be scored in each round,
a naïve computation is too slow. For our score computation, we make use of the approximate
eigendecomposition once more.

From the fitted distribution Q(u|y; γ), we compute design scores IG(X∗; Q(u|y; γ)) by not-
ing that H[Q(u|y; γ)] = 1

2 log |2πeσ2A−1|, so that IG(X∗; Q(u|y)) = log |I + X∗A−1XH
∗ | (see

chapter 2.6.2). Here, we approximate P(u|y, ỹ∗) by ∝ Q(u|y; γ)P(ỹ∗|u) without refitting the
variational parameters γ. If X∗ ∈ Cd×n, IG(X∗) can be computed by solving d linear systems,
but this is too slow to be useful. Instead, we use the Lanczos approximate eigendecomposi-
tion once more: ln |I + X∗A−1XH

∗ | ≈ ln |I + VH
∗V∗|, V∗ := Λ−1/2QHXH

∗ ∈ Ck×d. If k < d, we
compute ln |I + V∗VH

∗ | instead. This approximation allows us to score many large candidates
in each design round. Moreover, the score computation can readily be parallelised across dif-
ferent processors or machines. We compared approximate score values to true ones, on 64× 64
images where the latter can be computed. While the true values were strongly underestimated
in general (even the largest ones), the peaks of the score curves were traced correctly by the
approximations, and the maximisers of the approximate curves fell within dominating peaks
of the exact score.

6.3.3 Inference algorithm details

Our double loop algorithm to minimise the variational criterion φ(γ) is a special case of al-
gorithm 3.1, where all potentials are Laplace and the φ

(2)
∪ bound is used (see chapter 3.5.3 for

details). Figure 6.6 summarises how we iterate between inner and outer loops in order to solve
the variational problem. An equivalent but more detailed picture is provided in algorithm 6.2.

Approximate inference is used at different points in algorithm 6.1: in the initial phase before
the design loop, and at the end of each round. In our experiments, we used 5 outer loop steps
in the initial phase, and a single outer loop step between design extensions. We ran up to
30 inner loop IRLS steps, with up to 750 LCG iterations for each linear system (they often
converged much faster). To save time, we partitioned the IRLS steps in categories “sloppy”
and “convergence”. Sloppy steps use 150 LCG iterations only, preceding convergence steps.
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Algorithm 6.2 Double loop variational inference algorithm for MRI
Require: Data X, y

Outer loop: marginal variances ν = dg
(

BVQ(u|D)[u]B>
)
= σ2z by Lanczos (chapter 3.5.4)

Approximate eigendecomposition using k-step Lanczos: Aγ = XHX + B>Γ−1B ≈ QTQH

Refit upper bound φz(γ, u) = z>γ−1 + γ>τ2 + σ−2
(
‖y− Xu‖2 + s>Γ−1s

)
of equation 3.10

repeat
wj ← 1√

λj
BQvj, where VΛV> = T, z← ∑k

j=1 wj �wj

Inner loop: marginal means u∗ = EQ(u|D)[u] by IRLS (chapter 3.5.5)

Find u∗ ← arg minu
1

2σ ‖y− Xu‖2 + τ>
√

σ2z + s2 of equation 3.12
repeat

ς←
√

σ2z + s2, g← XH(Xu− y) + σB>τ � s� ς−1, H← XHX+ σ3B>dg(τ � z� ς−3)B
Solve linear system −Hd← g by CG to obtain Newton direction d
Find step size λ by line search along φz(u + λd), update u← u + λd

until Inner loop converged
Update s = Bu∗, γ← (στ)−1 �

√
σ2z + s2

until Outer loop converged
Double loop variational inference algorithm for the special case of the sparse linear model
with Laplace potentials. The objective φ(γ, u) of equation 3.6 is jointly minimised w.r.t. γ and
u by refitting an auxiliary upper bound φz(γ, u) in every outer loop iteration, which is then
minimised in the inner loop by a Newton algorithm.

The Lanczos algorithm was run for k = 750 iterations in general.
The approximate computation of the marginal variances ν in the outer loop using the Lanc-

zos algorithm is a crucial step. As mentioned in chapter 3.5.6 and detailed in the next section,
underestimated marginal variances bias the model towards MAP estimation. Following the
analysis in chapter 3.2 and the related figure 3.5, we analyse Lanczos vector convergence and
variance estimation errors in figure 6.7 using a realistic toy model with 32 × 32 pixels. Im-
portantly, we see that after k = 200 Lanczos steps, eigenvalues converged both on the lower
and the upper half of the spectrum. The current 200-dimensional approximate eigensystem,
however contains also much overlap with exact eigenvectors in the middle of the spectrum as
shown in figure 6.7 middle. Furthermore, the marginal variances ν = σ2z are heavily under-
estimated by ν̂ = σ2ẑk but interestingly, the relative accuracy for the largest and the smallest
variances is higher than for the intermediate ones.

6.3.4 Insights and special cases

Further analytically instructive insights (similar to chapter 3.5.6) can be obtained by looking at
some limiting cases of the surrogate (upper bound on the variational) objective function used
in the inner loop φz(u) = minγ φz(γ, u) =

min
γ

(
z>γ−1 + γ>τ2 + σ−2 ‖y− Xu‖2 + σ−2s>Γ−1s

)
, γ∗ = (στ)−1 �

√
σ2z + s2.

Recall that our variational approximate inference algorithms fits a sequence of Gaussians to a
non-Gaussian model, where φz(γ, u) serves as goodness-of-fit criterion. In the outer loop, z is
chosen to equal the slope of concave part in the objective in order to optimally upper bound it.
Interestingly, for differently chosen z, we still obtain an upper bound on the objective but also
converge to a different stationary point.

For particular choices of z, we find that three different estimators û: PLS p = 1 or MAP,
OLS and PLS p = 2 emerge as special cases of our criterion.

1. Choosing z = 0 leads to γ∗ = (στ)−1 � |s| and hence MAP estimation when optimising
φz(u).
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Figure 6.7: Convergence of Lanczos eigenvalues and variance estimation
Left: small scale example with u ∈ C32×32, X ∈ C672×1024, B ∈ C3008×1024, σ2 = 10−5,
τW = τD = 0.3. We show utrue and k the k-space coordinates. Middle: convergence of the
eigenvalue/eigenvector pairs after k = 200 Lanczos iterations. The variational parameter γ
has undergone two loops of the double loop algorithm. Right: relative accuracy of the Lanczos
estimate ẑk compared to z for k = 200.
Middle: eigenvalues converge from top and bottom, the bulk of the vectors in Q deals with
directions of intermediate eigenvalues. Right: smaller values of z are approximated more ac-
curately; marginal variances of wavelet potentials tend to be smaller.

2. Set z = υ21, then for large υ values γ∗ → υτ−1. Hence, we have that the terms z>γ−1 +
γ>τ2 → υ2>τ = const. and s>Γ−1s → υ−1s>(τ � s) → 0 are eliminated from φz(γ, u)
leaving σ−2 ‖y− Xu‖2, which coincides with OLS estimation.

3. Picking z = (ρ21− s2)/σ2 � 0 with ρ > maxj |sj| and τ = ρ
σγ · 1 in a data dependent way,

yields γ∗ = γ1 = const. and hence PLS estimation with p = 2.

Besides being formally interesting, these facts show that sparse MAP estimation (1. z = 0) and
simple least squares estimation (2. z → ∞) can be regarded as two ends of the same spectrum
with our variational approximation to the posterior mean in between. Sufficient tweaking of
the scale parameters τ (as done in 3.) allows even to obtain the quadratically penalised least
squares estimator.

6.4 Experiments

We consider design problems for Cartesian and spiral sequences. In either case, we extract or
interpolate measurements corresponding to desired trajectories from scanner data recorded on
an equispaced grid (Magneton Trio scanner, Siemens Medical Solutions, Erlangen, Germany;
turbo spin echo (TSE) sequence, 23 echos per excitation, train of 120◦ refocusing pulses, each
phase encoded differently, 1× 1× 4 mm3; different echo times and orientations, see figure 6.9).
Reconstructions û are validated by the L2 distance ‖utrue− |û|‖2, utrue being the absolute value
of the complete data reconstruction. We use sparse MAP reconstruction in general (equation
6.2), with code as used in Lustig et al. [2007], comparing against linear ZFDC reconstruction
(zero filling with density compensation) [Bernstein et al., 2004, chapter 13.2.4] for Cartesian
undersampling.

The near-Hermitian structure of measurements is an important instance of prior knowl-
edge, in that samples at k and −k are highly redundant. This knowledge is exploited in half-
Fourier acquisition [Bernstein et al., 2004, chapter 13.4]. It is built into our model through the
real-valuedness of u. In Cartesian sequences, only the upper or lower half of phase encodes
is measured, except for a central symmetric slab. For spiral trajectories, we restrict ourselves
to offset angles θ0 ∈ [0, π). These restrictions do not apply to image reconstruction. For MAP,
we follow the common practise of reconstructing a complex-valued û, then report its absolute
value, while ZFDC has to be modified by appending conjugates to X and y, doubling their size.
However, for sequential k-space optimisation, the restriction to real-valued u (phase contribu-
tions are treated as part of the noise ε) is important, keeping the optimisation from wasting
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Figure 6.8: Results for Cartesian undersampling, on sagittal slice (TSE, TE=92ms).
All designs contain 32 central lines. Equispaced [eq]; low-pass [ct]; random with variable den-
sity [rd]; optimised by our Bayesian technique [op], on same slice. Shown are L2 distances to
utrue. Left: Nonlinear (MAP) reconstruction. Right: Linear (ZFDC) reconstruction.

efforts on learning well known symmetries from scratch. For phase-sensitive applications, our
method would have to be modified.

6.4.1 Cartesian sequences

In the Cartesian setup, we select individual k-space lines from 256 equispaced candidates (with
d = 256 samples per line), the complete dataset corresponding to a standard Nyquist-sampled
image acquisition. Multiplications with X, X∗ correspond to equispaced discrete Fourier trans-
forms, for which we use the FFTW (Fastest Fourier Transform in the West; www.fftw.org/).

All designs compared here start with the 32 lines closest to the origin, which leaves 224
lines to choose from. Based on this low frequency data, we estimate a phase map and post-
multiply X in order to correct for phase noise, as in Lustig et al. [2007]. Phase mapping helps
sparse reconstruction, and is vital for Bayesian design optimisation (see Discussion). For the
equispaced designs eq, the remaining space is covered with Nshot − 32 equispaced lines. The
low-pass designs ct occupy lines densely from the centre outwards. Random designs rd are
drawn according to the heavy-tailed variable density used in Lustig et al. [2007] (we modified
their density to accommodate the smaller central slab), which accounts for the nonuniform
spectral distribution of (MR) images specifically (1/ f spectral decay). Lines are drawn without
replacement. In accordance with Lustig et al. [2007], we noted that drawing lines uniformly at
random results in poor reconstructions (not shown). Our Bayesian design optimisation tech-
nique makes use of the remaining 224 lines as candidate set C. The optimisation is done on a
single slice (TSE, TE=92ms, sagittal orientation; figure 6.8, left), featuring many details, while
we present test reconstruction results on a wide range of different data, unknown during de-
sign optimisation.

Reconstruction error results are given in figure 6.8 (tested on slice used for design optimisa-
tion) and figure 6.9 (tested on wide range of other data, unknown during design optimisation).
If nonlinear MAP reconstruction is used for undersampled reconstruction, the optimised de-
signs clearly outperform all other choices, especially with fewer lines (the left end, 64 lines, is 1

4
of the Nyquist rate). Low-pass designs outperform variable density random designs with few
lines, while the latter improves from about 1

2 the Nyquist rate. In contrast, if linear reconstruc-
tion is used (figure 6.8, right), only low-pass designs lead to acceptable reconstructions.

Importantly, the dominating part of improvements of optimised over other designs consid-
ered here generalises to data never seen during optimisation, as shown in figure 6.9. This is
the case even for axial orientations, depicting details different from the single sagittal slice the
design was optimised on. As seen in the right panel, the improvements are consistent across
echo times, orientations, and subjects, and their size scales with the reconstruction difficulty of
the test slice.

www.fftw.org/
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Figure 6.9: Results for Cartesian undersampling, on TSE scans.
The range of data was unknown during design optimisation. We use different echo times
(TE=11ms, TE=92ms) and orientations (sagittal, axial). Design choices as in figure 6.8. Shown
are L2 distances to utrue, averaged over 5 slices and 4 different subjects. Left: reconstruction test
errors for different datasets (echo time, orientation). Error bars for variable density random
[rd] w.r.t. ten repetitions. Right: reconstruction test errors, averaged over 5 slices, for designs
of 127 lines.

MAP reconstructions for Cartesian sagittal data (TSE, TE=88ms, unknown during design
optimisation) are shown in figure 6.10, for axial data (TSE, TE=92ms) in figure 6.11, comparing
different designs of 64 lines ( 1

4 Nyquist; scan time reduction by factor of 4). The superior quality
of reconstructions for the optimised design is evident.

6.4.2 Spiral sequences

Interleaved outgoing Archimedian spirals employ k-space trajectories k(t) ∝ θ(t)ei2π[θ(t)+θ0],
θ(0) = 0, where the gradient g(t) ∝ dk/dt grows to maximum strength at the slew rate,
then stays there [Bernstein et al., 2004, chapter 17.6]. Sampling along an interleave (azimuthal
direction) respects the Nyquist limit. The number of revolutions Nr per interleave, and the
number of interleaves Nshot determine the radial spacing, with scan time proportional to Nshot.
We use Nr = 8, resulting in 3216 samples per interleave. Radial Nyquist spacing is attained
for Nshot ≥ 16. Candidates are interleaves, parametrised by the offset angle: X∗ = X∗(θ0),
with d = 3216 rows. Samples do not lie on a regular grid: non-equispaced FFT is used
to multiply with X, X∗ (NFFT with Kaiser-Bessel kernel [Bernstein et al., 2004, chapter 13.2];
www-user.tu-chemnitz.de/~potts/nfft). Our experiments are idealised, in that spiral sam-
pling is simulated by NFFT interpolation from data acquired on a grid.

We compare MAP reconstruction under a number of design choices: equispaced (eq), uni-
formly drawn at random (rd), and optimised (op). Angles lie in [0, 2π) in the first, and in [0, π)
in the second setting. All designs contain θ0 = 0. In addition, eq uses θ0 = j(kπ/Nshot), j =
1, . . . , Nshot − 1; for rd, we draw Nshot − 1 angles uniformly at random from C = (kπ/256)[1 :
255], averaging results over ten repetitions; for op, we start from the single interleave θ0 = 0
and use the candidate set C. Here, k ∈ {1, 2}, depending on the setting. For k = 2, setups with
Nshot = 8 halve the scan time, compared to Nyquist spacing. Designs are optimised on a single
slice (figure 6.8, left), featuring many details.

In the first setting (k = 2), the near-Hermitian symmetry of data means that eq is at a
disadvantage for even Nshot. In order to correct for this fact, and to test the relevance of u
being close to real-valued (after phase mapping and subtraction), we restrict angles to [0, π)
in a second setting (k = 1). By interpolating non-Cartesian sampling, we ignore characteristic
errors of spiral acquisition in practise, which may diminish the impact of our findings (see
section 6.5).

MAP reconstruction errors for spiral undersampling are given in figure 6.12. The left col-
umn shows performance on the data the angles were optimised over, while in the right column,

www-user.tu-chemnitz.de/~potts/nfft
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MAP ct, 64 lines, E=7.38 MAP op, 64 lines, E=5.55 MAP full MAP rd4, 64 lines, E=7.19 MAP eq, 64 lines, E=10.36

Figure 6.10: MAP reconstructions for Cartesian undersampling, sagittal TSE data.
We have TE=88ms (unknown during design optimisation) and Nshot = 64 phase encodes (red:
32 initial centre lines; blue: 32 additional encodes according to design choices). Upper row:
full images. White window: location of blow-up. Middle row: residuals (difference to utrue),
location of phase encodes (k-space columns). Lower row: blow-ups.
MAP ct: apparent lower resolution, fine structures smoothed out. MAP rd: erroneous dark
structure (upper left). MAP op: satisfying level of details at 1

4 of Nyquist rate, considerably
more detail and less blurring than for the other undersampled designs.

we test generalisation behaviour on a range of different data. The lower row corresponds to the
first setting, with offset angles θ0 ∈ [0, 2π). As expected, eq for even Nshot does poorly, due to
the almost-Hermitian symmetry of the data, while performing comparably to op for odd Nshot.
In the second setting (θ0 ∈ [0, π), upper row), eq and op perform similarly from Nshot = 7, with
op outperforming eq for smaller designs. In comparison, drawing offset angles at random leads
to much worse MAP reconstructions in either setting. As for Cartesian undersampling, the per-
formance on different datasets, unknown at optimisation time, is comparable to the behaviour
on the training set, except that eq does substantially worse on axial than on sagittal scans.

6.5 Discussion

We have highlighted the importance of k-space sampling optimisation tailored specifically to
novel nonlinear sparse reconstruction algorithms, and have proposed a Bayesian experimental
design framework. Our experimental results for Cartesian undersampling show that sparse
reconstruction quality depends strongly on the sampling design chosen, with phase encodes
optimised by our Bayesian technique outperforming other commonly used undersampling
schemes, such as low-pass or variable density random designs [Lustig et al., 2007]. With opti-
mised sampling, high-quality reconstructions are obtained if only half of all lines are measured,
and useful images can be reconstructed at 1

4 of the Nyquist rate (figure 6.10, figure 6.11). The
behaviour of undersampling designs is very different for linear reconstruction, where only low-
pass measurements lead to good reconstructions (figure 6.8, right), indicating that linear design
optimisation concepts, such as the point spread function (see section 6.2.3), play a diminished
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MAP ct, 64 lines, E=6.62 MAP op, 64 lines, E=4.38 MAP full MAP rd10, 64 lines, E=5.60 MAP eq, 64 lines, E=7.77

Figure 6.11: MAP reconstructions for Cartesian undersampling, axial TSE data.
We have TE=11ms (unknown during design optimisation) and Nshot = 64 phase encodes (red:
32 initial centre lines; blue: 32 additional encodes according to design choices). Upper row:
full images. White window: location of blow-up. Middle row: residuals (difference to utrue),
location of phase encodes (k-space columns). Lower row: blow-ups.
MAP ct: apparent lower resolution than MAP rd, MAP op. Both MAP ct and MAP rd have
tendency to fill in dark area. MAP op retains high contrast there.

role for nonlinear reconstruction, and that sampling optimisation has to be matched to the
reconstruction modality. The improvement of optimised over other design choices is most pro-
nounced for fewer number of lines acquired. Importantly, even though designs are optimised
on a single slice of data, a large part of these improvements generalises to different datasets
in our study, featuring other slice positions, subjects, echo times, and even orientations (figure
6.9). Our results indicate that Bayesian design optimisation can be used offline, adjusting tra-
jectories on data acquired under controlled circumstances, and final optimised designs can be
used for future scans. Our framework embodies the idea of adaptive optimisation. The sam-
pling design is adjusted based on a representative dataset (called training set), and if adequate
measures for complexity control are in place (Bayesian sparsity prior, proper representation of
posterior mass, sequential scheme of uncovering information only if asked for), good perfor-
mance on the training set (figure 6.8) tends to imply good performance on independent test
sets (figure 6.9), thus successful generalisation to similar future tasks.

Our framework is not limited to Cartesian sampling, as demonstrated by our application
to spiral k-space optimisation. However, our findings are preliminary in this case: spiral sam-
pling was interpolated from data acquired on a Cartesian grid, and only the offset angles of
dense Archimedian interleaves were optimised (instead of considering variable-density spi-
ral interleaves as well). In this setting, designs optimised by our technique show comparable
performance to spacing offset angles equally, while a randomisation of these angles performs
much worse.

In Bayesian design optimisation, statistical information is extracted from one or few rep-
resentative images used during training and represented in the posterior distribution, which
serves as oracle to steer further acquisitions along informative directions. Importantly, and con-
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Figure 6.12: Results for MAP reconstruction, spiral undersampling of offset angles θ0.
Left column: reconstruction errors on sagittal slice (see figure 6.8 left), on which op is opti-
mised. Right column: reconstruction errors on different data (averaged over 5 slices, 4 subjects
each, see figure 6.9). Upper row: offset angles from [0, π). Lower row: offset angles from
[0, 2π). Design choices: equispaced [eq]; uniform at random [rd] (averaged over 10 repeti-
tions); optimised by our Bayesian technique [op].

firmed in further experiments (not shown), it is essential to optimise the design on MRI data
for real-world subjects, or controlled objects of similar statistical complexity; simple phantoms
do not suffice. While the latter are useful to analyse linear reconstruction, they cannot play
the same role for nonlinear sparse reconstruction. Modern theory proves that overly simple
signals (such as piecewise constant phantoms) are reconstructed perfectly from undersampled
measurements, almost independently of the design used for acquisition [Candès et al., 2006,
Donoho, 2006a]. This advantage of sparse reconstruction per se, for almost any design, does
not carry over to real-world images such as photographs (see chapter 5) or clinical resolution
MR images. The relevance of design optimisation grows with the signal complexity, and is
dominatingly present for MR images of diagnostically useful content and resolution.

Variable density phase encoding sampling does not perform well at 1
4 of the Nyquist rate

(figure 6.10, figure 6.11), if the density of Lustig et al. [2007] is used. For a different density with
lighter tails (more concentrated on low frequencies), reconstructions are better at that rate, but
are significantly worse at rates approaching 1

2 or more (results not shown). In practise, this
drawback can be alleviated by modifying the density as the number of encodes grows. From
our experience, a second major problem with variable density design sampling comes from the
independent nature of the process: the inherent variability of independent sampling leads to
uncontrolled gaps in k-space, which tend to hurt image reconstruction substantially. Neither
of these problematic aspects is highlighted in Lustig et al. [2007], or in much of the recent com-
pressed sensing theory, where incoherence of a design is solely focused on. A clear outcome
from our experiments here is that while incoherence plays a role for nonlinear reconstruction,
its benefits are easily outweighed by neglecting other design properties. Once design sampling
distributions have to be modified with the number of encodes, and dependencies to previously
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drawn encodes have to be observed, the problem of choosing such a scheme is equivalent to
the design optimisation problem, for which we propose a data-driven alternative to trial-and-
error here, showing how to partly automatise a laborious process, which in general has to be
repeated from scratch for every new configuration of scanner setup and available signal prior
knowledge.

Further issues will have to be addressed in a fully practical application of our method. We
extracted (or interpolated) undersampling trajectories from data acquired on a complete Carte-
sian grid, which may be realistic for Cartesian undersampling, but neglects practical inaccu-
racies specific to non-Cartesian trajectories. Moreover, in multi-echo sequences, the ordering
of phase encodes matters. For an immobile training subject/object, our sequential method can
be implemented by nested acquisitions: running a novel (partial) scan whenever X is extended
by a new interleave, dropping the data acquired previously. With further attendance to imple-
mentation and commodity hardware parallelisation, the time between these scans will be on
the order of a minute. Gradient and transmit or receive coil imperfections (or sensitivities), as
well as distortions from eddy currents, may imply constraints for the design, so that less can-
didates may be available in each round. Such adjustments to reality will be simplified by the
inherent configurability of our Bayesian method, where likelihood and prior encode forward
model and known signal properties.

The near-Hermitian symmetry of measurements is an important instance of prior knowl-
edge, incorporated into our technique by placing sparsity potentials on the imaginary part
=(u). This leads to marked improvements for sparse reconstruction, and is essential for
Bayesian k-space optimisation to work well. In addition, phase mapping and subtraction is
required. Phase contributions substantially weaken image sparsity statistics, thereby eroding
the basis sparse reconstruction stands upon. In the presence of unusual phase errors, spe-
cialised phase mapping techniques should be used instead. In future work, we aim to integrate
phase mapping into our framework.

In light of the absence of a conclusive nonlinear k-space sampling theory and the well-
known complexity of nonlinear optimal design, our approach has to be seen in the context of
other realizable strategies. Designs can optimised by blind (or heuristic) trial-and-error explo-
ration [Marseille et al., 1996], which in general is much more demanding in terms of human
expert and MRI scan time than our approach. Well-founded approaches fall in two classes:
artificially simplified problems are solved optimally, or adaptive optimisation on representa-
tive real datasets is used. We have commented above on recent advances in the first class, for
extremely sparse, unstructured signals [Candès et al., 2006, Donoho, 2006a], but these results
empirically seem to carry little relevance for real-world signals. Our method falls in the sec-
ond class, as an instance of nonlinear sequential experimental design [Chaloner and Verdinelli,
1995, Fedorov, 1972], where real-world signals are addressed directly, and for which few prac-
tically relevant performance guarantees are available. Our approach to design optimisation is
sequential, adapting measurements to largest remaining uncertainties in the reconstruction of
a single image. While we established sound generalisation behaviour on unseen data in our
experiments, real-time MRI [Gamper et al., 2008], [Bernstein et al., 2004, chapter 11.4] may es-
pecially benefit from our sequential, signal-focused approach. While our algorithm at present
does not attain the high frame rates required in these applications, algorithmic simplifications,
combined with massively parallel digital computation, could allow our framework to be used
in the future in order to provide advanced data analysis and decision support to an operator
during a running MRI diagnosis.

Possible extensions include the application of the framework to 3D imaging. One step in
this direction has already been done by Seeger [2010b], where Markovian assumptions between
neighbouring slices are used to approximate full inference on a 3D cube of voxels instead of a
2D slice. Other future steps include the application of our methodology to real non-Cartesian
measurements instead of simulated ones.



Chapter 7

Overall Conclusion and Perspectives

7.1 Summary

In this thesis, we developped and discussed many aspects of deterministic approximate infer-
ence algorithms for generalised linear Bayesian models: chapter 3 focused on convexity and
scalability, chapter 4 compared relative accuracy. We applied the algorithms to binary classi-
fication (chapter 3), linear compressive image acquisition (chapter 5) and magnetic resonance
imaging (MRI) optimisation (chapter 6) proving the validity and utility of our approach.

We studied three kinds of problems in increasing order of difficulty:

1. estimation, where the probabilistic model needs to provide a single best answer, that
means a decision used in the future,

2. inference, where a normalised relative weighting between all possible answers in form of
the posterior distribution is provided leaving the decision open, and

3. experimental design, where we seek to determine the questions to be asked in the first
place to obtain solid knowledge allowing to produce informed answers subsequently.

In order to overcome analytical intractabilities, we had to do several approximations: we re-
placed non-Gaussian distributions by Gaussian ones and we worked with lower bounds on
marginal variances instead of their exact values. We saw strong similarities between the ap-
proximate inference algorithms allowing to understand the effect of the approximations in
practise. Also, we made clear that inference is to a certain extent orthogonal to modelling
because many inference algorithms are able to approximate the exact posterior using the same
interface. We also detailed the nested structure of the interrelations between estimation, in-
ference and design: design can be done using a sequence of inference steps and inference can
be understood as a sequence of estimation steps. Most estimators are solutions of optimisation
problems; on the contrary, inference corresponds to considerably harder integration problems.

7.2 Discussion and Outlook

We group the ideas on possible extensions of the work and future research directions into three
different categories: theory, algorithms and applications.

Theory

The focus of this thesis is more on computations than on pure analysis. Therefore, some theoret-
ical questions do remain. In continuous optimisation (or equivalently estimation techniques), it
is convex problems (log-concave unimodal models) not linear ones (Gaussian models) that are
considered simple [Boyd and Vandenberghe, 2004]. Similarly, we were able to show that there
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is a similar line of separation in a particular approach to inference: our variational algorithm is
scalable, convex and convergent for log-concave and not only for Gaussian models. However
it is unclear, how general this statement is.

Furthermore, a Gaussian approximation captures pairwise interactions but higher-order de-
pendencies remain impossible to be represented. For large image models, already relationships
between every pair of pixels are very challenging. Also, it would be interesting to formalise,
how much of the non-Gaussian behaviour such as sparsity can be conserved in principle by a
sequence of Gaussians as we use it.

The relationship between inference and estimation is not yet fully understood in general,
especially for high-dimensional and non-Gaussian models. Inference is certainly computation-
ally harder but also offers some benefits. Sometimes inference problems have less local minima
than the corresponding estimation problems [Wipf et al., 2010]. The result of an inference pro-
cedure provides an intrinsic sensitivity statement.

Finally, linear experiment design is widely used in biology for example. Non-linear and/or
Bayesian experimental design has received much less attention in the statistics literature even
though it can deal much better with the underdetermined case. There is surprisingly little
theoretical analysis for sequential non-Gaussian design.

Algorithms

The most important algorithmical questions concern convexity and scalability. Are there ver-
sions of Gaussian Kullback-Leibler divergence minimisation (KL) or even expectation propaga-
tion (EP) that can be solved by convex optimisation? What is so special about the combination
of the variational Bayesian (VB) relaxation and the decoupling idea so that it yields a scalable
algorithm? It would be very interesting to further analyse whether there is in fact a trade-off
between accuracy (VB is less accurate than EP) and scalability (EP is not scalable), or whether
there is a way of deriving a scalable EP or KL algorithm. Also, one can try and improve the
variance lower bounds we used.

A more obvious step would not alter the algorithms but would rather improve the imple-
mentation. Modern parallel processors and graphics cards offer a lot of computing power able
to alleviate the computational burden substantially.

Applications

Generalised and sparse linear models are omnipresent cornerstones of applied statistics heavily
employed in information retrieval, machine learning, computational biology, signal processing
and econometrics. Our inference technology is valuable whenever there is the need to not
only output a single decision but accomplish a higher-level task: optimisation of the linear
map itself according to information theoretic criteria. If the space of linear maps (e.g. the
image measurement architecture) has many parameters, it is impossible to sample by a human
expert. Here, our design algorithms can help the exploration process by simulating parts on a
computer reducing the number of necessary real-world experiments.

Undersampling or more generally exploiting redundancy in signals to accelerate their ac-
quisition is only a particular instance of the trend where more computational power in a post-
processing step can compensate for an incomplete or noisy acquisition step. Our methodology
allows to optimise the acquisition step in this scenario.

A particularly interesting domain is image processing, where linear and bilinear models are
used, e.g. for removing camera shake [Fergus et al., 2006] using inference techniques [Miskin,
2000]. Our variational framework can be applied here, as well.

Finally, our MRI imaging study was only a first step, many more are possible. Experiment
design to speed up the acquisition of three-dimensional spatial volumes, four-dimensional
spatio-temporal data possibly using parallel receiver coils is and remains challenging.



Appendix A

Matrix and Differential Calculus

A.1 Inverses, determinants and generalised inverses

A.1.1 Matrix inversion lemma

The numerical inversion of a non-singular matrix A ∈ Rn×n is an O(n3) operation. From A−1,
one can compute the inverse of a rank-k modified matrix A + UBV> in O(k · n2) by the so-
called Sherman–Morrison–Woodbury formula or simply the Woodbury formula [Woodbury, 1950].
Precisely, for invertible B ∈ Rk×k and general U, V ∈ Rn×k we have(

A + UBV>
)−1

= A−1 −A−1U
(

B−1 + V>A−1U
)−1

V>A−1,

which simplifies for k = 1, B = 1, U = u, V = v to the Sherman-Morrison identity(
A + uv>

)−1
= A−1 − z · xy>, x = A−1u, y = A−1v, z =

1
1 + v>A−1u

for rank-1 updating an matrix inverse.

A.1.2 Matrix determinant lemma

A similar identity exists for the update of a determinant of a matrix under the name general
matrix determinant lemma ∣∣∣A + UBV>

∣∣∣ = ∣∣∣B−1 + V>A−1U
∣∣∣ · |B| · |A| ,

which includes the matrix determinant lemma as the special case k = 1, B = 1, U = u, V = v∣∣∣A + uv>
∣∣∣ = (1 + v>A−1u) · |A| .

If A−1 is known already, the determinant can be updated in O(k · n2) as well.

A.1.3 Generalised inverses and pseudoinverse

For a non-singular quadratic matrix A, the matrix inverse is the unique matrix B satisfying
AB = BA = I denoted by A−1.

While loosing some of the properties of a proper matrix inverse, the concept can be gen-
eralised to singular and rectangular matrices. A generalised inverse A− ∈ Rn×m of matrix
A ∈ Rm×n [Lütkepohl, 1997] has to satisfy

AA−A = A.

This construction is not unique, since for any matrix B ∈ Rn×m, the matrix Ã− := A− + B−
A−ABAA− is also a generalised inverse of A. Only for m = n and non-singular A, the gen-
eralised inverse and the inverse are the same A− = A−1. Examples include the Drazin inverse
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for singular quadratic matrices and the Bott-Duffin inverse from constrained optimisation for
rectangular matrices.

By far the most prominent generalised inverse is the unique Moore-Penrose pseudo inverse
A+ obeying

A+AA+ = A+, AA+ = (AA+)
> , A+A =

(
A+A

)>
in addition. It can be computed from the compact singular value decomposition A = USV>

with orthonormal U, V ∈ Rn×r, diagonal S ∈ Rr×r
+ and r being the rank of A by

A+ = US−1V>.

Another way of obtaining A+ is based on the limit A+ = limδ→0 A>(AA> + δI)−1 and equiva-
lently on A+ = limδ→0(A>A + δI)−1A>.

A.2 Derivatives and differential calculus

For a function f : Rn → Rm and a point a ∈ Rn, we call the unique linear function λ : Rn → Rm

satisfying

lim
h→0

‖ f (a + h)− f (a)− λ(h)‖
‖h‖ = 0 (A.1)

the derivative of f at a. We use the concept of Fréchet derivative in the following since it is
most adapted to be used in the matrix calculus. The function f comes from a space F and
the subspace of F containing linear functions only is denoted by L. Equation A.1 formalises
the notion that λ is an optimal local linear approximation to f at a. Every linear function,
λ : Rn → Rm can be represented by an m× n matrix G so that λ(x) = Gx. Since all information
about λ is contained in the matrix G, we often talk about the matrix G ∈ Rm×n when we
actually reason about the function λ ∈ L. We use the notation d f (a) : Rn → Rm ∈ L to refer
to the derivative of f ∈ F at a (i.e. the λ ∈ L satisfying condition A.1) and the differential
d f : Rn ×Rn → Rm is employed whenever we want to work with a generic value of a. For
the case of scalar outputs, i.e. m = 1, the matrix G ∈ R1×n specifying the behaviour of d f (a) is
denoted by f ′(a), ∂ f

∂x (a) or ∂ f
∂X (A) depending on the input. Finally, we use the notation

differential derivative
d f = dx · f ′ d f (x) = dx · f ′(x) (A.2)

d f = dx>
∂ f
∂x

d f (x) = dx>
∂ f
∂x

(x)

d f = tr
(

dX>
∂ f
∂X

)
d f (X) = tr

(
dX>

∂ f
∂X

(X)
)

(A.3)

for the differentials and the derivatives, i.e. the linear mappings dx 7→ z ∈ Rm, where z equals
d f (x) “evaluated at” the small change dx. The reason why the above notation is so powerful
comes from the fact that it encompasses derivatives of vector and matrix valued functions in
a common framework using the standard calculus from linear algebra avoiding nasty summa-
tions and multi-indices. For a good reference, see Magnus and Neudecker [1999].

For gradient-based optimisation, one is often interested in deriving an expression for the
vector ∂ f

∂x (x). In order to do that, there are some rules that allow – starting from d f – to obtain
expressions of the form of equation A.3, where one can simply read off ∂ f

∂x (x). In the following,
we list some handy rules to manipulate differential expressions [Lütkepohl, 1997].

A.2.1 Simple rules

Among the simple rules, we have dA = 0 for constant expressions as well as d(aX + bY) =
adX + bdY, dtr(X) = tr(dX), d(diag(X)) = diag(dX) and d(X>) = (dX)> for linear expres-
sions.
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A.2.2 Product rules

For matrix products and Hadamard products, we have the rules d(XY) = dXY + XdY and
d(X� Y) = dX� Y + X� dY implying d(Xn) = ∑n

i=1 Xi−1dXXn−i.

A.2.3 Determinant, inverse and pseudo-inverse

In the following, we list d f (X) for some common matrix valued functions.

d|X| = |X| · tr(X−1dX)
d ln |X| = tr(X−1dX)

dX−1 = −X−1dXX−1

The pseudo inverse does not admit a closed-form expression for d f (X), however, we can write:

XdX+X = −XX+dXX+X.

A.2.4 Matrix exponential

The matrix valued function defined by eX = ∑∞
k=0

1
k! X

k, called the matrix exponential, is dis-
tinctively different from the component-wise matrix exponentiation [exp(X)]ij = exp(Xij).

d exp(X) = exp(X)� dX
dtr(eX) = tr(eXdX)

A.2.5 Matrix decompositions

Singular values for general X ∈ Rm×n:

X = UΣV>, U>U = I, Σ = dg(σ), V>V = I
dσ = dg(U>dXV)

Eigenvalues for symmetric X ∈ Symn = {X ∈ Rn×n : X = X>}:
X = VΛV>, V>V = I, Σ = dg(λ)

dλ = dg(V>dXV)

Eigenvectors for symmetric X ∈ Symn ∀i = 1..n:

Xvi = λivi, v>i vi = 1

dvi = (λiI− X)+dXvi = −
n

∑
j=1,j 6=i

vj
1

λj − λi
v>j dXvi

A.2.6 General spectral functions

The section is based on Lewis [1996]. For X ∈ Symn, a spectral function φ : Symn → R

satisfies φ(UXU>) = φ(X) for any orthonormal matrix U ∈ SOn = {X ∈ Rn×n : U>U =
UU> = I}. Denoting by λ : Symn → Rn or Λ : Symn → Rn×n the eigenvalue function X 7→
[λ1(X), .., λn(X)]> or X 7→ dg[λ1(X), .., λn(X)] returning the vector with the ordered eigenvalues
λ1 ≥ λ2 ≥ .. ≥ λn, every spectral function can be written as φ(X) = f (λ(X)) = f (Λ(X)) for a
symmetric function f : Rn 7→ R. Hence, the name spectral function; φ(X) only depends on the
spectrum λ(X). The differential is then given by

dφ(X) = tr
(
( f ◦ λ)′(X)dX

)
= tr

(
U f ′(Λ)U>dX

)
, where X = UΛU>.

Two special cases are interesting:
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• For f (λ) = 1> ln λ, φ(X) = ln |X| and f ′(λ) = λ−1, we obtain d ln |X| = tr
(
UΛ−1U>dX

)
=

tr
(
X−1dX

)
.

• For f (λ) = 1>eλ, φ(X) = tr(eX) and f ′(λ) = eλ, we obtain dtr(eX) = tr
(
UeΛU>dX

)
=

tr
(
eXdX

)
.

More generally, the differential of the matrix valued function F : Symn → Symn obeying
F(X) = U f (Λ)U> with X = UΛU> is harder to obtain

dF(X) = U f ′(Λ)dΛU> + dU f (Λ)U> + U f (Λ)dU>

= Udg
[

f ′(λ)� dg(U>dXU)
]

U> +
n

∑
i=1

ui fi(λi)du>i + dui fi(λi)u>i

=
n

∑
i=1

ui f ′i (λi)u>i dXuiu>i + ui fi(λi)du>i + dui fi(λi)u>i ,

where

dui fi(λ)iu>i = −
n

∑
j=1,j 6=i

uj
fi(λi)

λj − λi
u>j dXuiu>i

and

ui fi(λ)idu>i = −
n

∑
j=1,j 6=i

ui
fi(λ)i

λj − λi
u>i dXuju>j .

Thus, we have finally

dF(X) =
n

∑
i=1

ui f ′i (λi)u>i dXuiu>i +
n

∑
j=1,j 6=i

fi(λi)

λi − λj

(
uju>j dXuiu>i + uiu>i dXuju>j

)
=

n

∑
i=1

(
ui f ′i (λi)u>i +

n

∑
j=1,j 6=i

uj
fi(λi)− f j(λj)

λi − λj
u>j

)
dXuiu>i .

For fi(λi) = λi we find dX = dX. Using fi(λi) = λ−1
i , f ′i (λi) = −λ−2

i and hence F(X) = X−1,
we get

dF(X) =
n

∑
i=1

(
−ui

1
λ2

i
u>i +

n

∑
j=1,j 6=i

uj
λ−1

i − λ−1
j

λi − λj
u>j

)
dXuiu>i

= −
n

∑
i=1

(
ui

1
λi

u>i +
n

∑
j=1,j 6=i

uj
1− λ−1

j λi

λj − λi
u>j

)
dXui

1
λi

u>i

= −
n

∑
i=1

(
ui

1
λi

u>i +
n

∑
j=1,j 6=i

uj
1
λj

u>j

)
dXui

1
λi

u>i

= −
n

∑
i=j

uj
1
λj

u>j dX
n

∑
i=1

ui
1
λi

u>i = −X−1dXX−1.



Appendix B

Convexity and Convex (Fenchel) duality

Convex sets, functions and their duality properties are very important concepts in analysis
and optimisation [Boyd and Vandenberghe, 2004, Rockafellar, 1970] since they allow for strong
statements about their behaviour. Convexity constrains the mathematical objects so that many
local properties also hold globally.

B.1 Convex sets

A subset X of a vector space is called convex if every pair of objects x, z ∈ X can be connected
by a line that is contained in X . Formally, we have

X convex if ∀x, z ∈ X ∀t ∈ [0, 1] : (1− t)x + tz ∈ X . (B.1)

Convex sets are closed under intersection meaning that from convexity of X ,Z it follows that
X ∩Z is convex. Furthermore, convex combinations of elements are contained in convex sets.
If xi ∈ X , i = 1..n and ∑n

i=1 αi = 1, αi ≥ 0 then ∑n
i=1 αixi ∈ X .

B.2 Convex functions

The most appealing property of convex functions from an optimisation viewpoint is the fact
that local minima correspond to global minima. Along these lines, the common wisdom in
machine learning is that convex optimisation is easy and therefore considered a very desirable
property. Convex functions are functions that can be lower-bounded by linear functions

f : X → R convex if ∀x, z ∈ X ∀t ∈ [0, 1] : f ((1− t)x + tz) ≤ (1− t) f (x) + t f (z) . (B.2)

A more general version of equation B.2 is known as Jensen’s inequality

f

(
n

∑
i=1

pixi

)
≤

n

∑
i=1

pi f (xi) , pi ≥ 0,
n

∑
i=1

pi = 1 (B.3)

f
(∫

P(x)xdx
)
= f

(
EP(x) [x]

)
≤

∫
P(x) f (x)dx = EP(x) [ f (x)] , P(x) ≥ 0,

∫
P(x)dx ≥ 0

that can be used to upper bound convex functions of linear combinations and expectations.
Convexity of twice continuously differentiable functions is equivalent to a positive semidefinite
Hessian matrix

f : X → R convex if ∀x ∈ X :
∂2 f (x)
∂x∂x>

< 0.

Strict convexity requires f ((1− t)x + tz) < (1− t) f (x) + t f (z). A function f is concave if − f
is convex.

The set of convex functions is closed under several operations [Boyd and Vandenberghe,
2004, 3.2] such as
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• addition: f (x), g(x) convex⇒ f (x) + g(x) convex

• positive scaling: f (x) convex, α ∈ R+ ⇒ α f (x) convex

• affine composition: f (x) convex⇒ f (Az + b) convex in z

• pointwise maximisation: f (x), g(x) convex⇒max{ f (x), g(x)} convex and

• marginalisation: f (x, z) jointly convex in [x; z]⇒minx f (x, z) convex in z.

B.3 Convex duality

Since convex functions can be lower bounded by linear functions, one can represent them as a
maximum over linear functions with normal vector z and offset f ?(z)

f (x) = max
z

z>x− f ?(z). (B.4)

On an abstract level, f (x) can be equivalently represented by points (x, f (x)) or by hyperplanes
z>x− f ?(z). This is the duality relationship at the core of convex duality. The function f ?(z) is
called the Legendre dual of f (x). For strictly convex functions, we have f ?? = f . The duality
relationship can be used to obtain lower bounds on the function f (x)

f (x) ≥ z>x− f ?(z) c
= z>x ∀z. (B.5)

For a point x, the bound becomes tight, i.e. f (x) = z>x− f ?(z) if z = ∂ f (x)
∂x . Similarly, con-

cave functions can be upper bounded by linear functions, which turns out helpful in convex
optimisation, where one can replace concave terms in the objective functions by simple linear
functions as suggested by equation B.5.

B.4 Examples

In the following, we will provide some common duality relationships. In general, from the pair
f (x) 7→ f ?(z), we can deduce the following variational representations of f (x)

f (x) convex f (x) = max
z

z>x− f ?(z)

f (x) concave f (x) = min
z

z>x− f ?(z).

The following table lists useful pairs of functions and their respective Legendre duals.

function µ f (x) f (µx) f (x) + a f (x + y) 1
2 x>Ax ex

Legendre dual µ f ?(z/µ) f ?(z/µ) f ?(z)− a f ?(z)− z>y 1
2 z>A−1z x ln x− x

For quadratic functions, we can obtain the following variational representations

1
2

x>A−1x = max
z

x>z− 1
2

z>Az and

−x>A−1x = min
z

z>Az− 2x>z.



Appendix C

The Multivariate Gaussian

The multivariate Gaussian distribution is the analytically most convenient and therefore most
important multivariate distribution for continuous variables. Besides being the maximum-
entropy distribution for a fixed mean µ and variance Σ, the Gaussian family is closed under
affine transformations, marginalisation and conditioning. Furthermore, the Gaussian distribu-
tion naturally emerges from the central limit theorem as the asymptotic distribution of sums of
many random variables.

C.1 Gaussian density

The Gaussian distribution with mean µ ∈ Rn, positive definite variance Σ � 0 ∈ Rn×n has the
density

N (x|µ, Σ) := P(x) = |2πΣ|− 1
2 exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
.

Its marginals are given by P(xi) = N (xi|µi, σ2
i ), where σ2 = dg(Σ). Affine transformations of

Gaussians produce Gaussians

x ∼ N (µ, Σ)⇒ Bx + c ∼ N (Bµ + c, BΣB>).

C.2 Unnormalised Gaussian

A second parametrisation of the distributions is given by the natural parameters [b, A], where
A is the precision matrix. One can easily transform between the moment and the natural pa-
rameters via [µ, Σ] = [A−1b, A−1]. Often in calculations, the Gaussian components need not to
be normalisable. Therefore, we work with Gaussian functions

G(x|b, A) = exp
(

b>x− 1
2

x>Ax
)

, A � 0.

Conditionals are best computed from the natural parametrisation

xi|xj ∼
1
Z
G(xi|bj + Aijxj, Aii).

C.3 Exponential family

A widely used class of distributions also including the Gaussian, is the exponential family

P(x|θ) = exp
(

θ>φ(x)−Φ(θ)
)

,

where θ denotes the natural or exponential parameters, φ(x) is the vector of sufficient statistics
and Φ(θ) = ln

∫
exp

(
θ>φ(x)

)
dx is the convex log partition function making sure that P(x|θ)
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integrates to 1. In the statistics literature [Wasserman, 2005, chapter 19], the equivalent term
log-linear models is used. The vector η =

∫
P(x|θ)φ(x)dx contains the moment parameters.

The Gaussian distribution can be obtained from the sufficient statistics φ(x) = [x, xx>]
and exponential parameters θ = [Σ−1µ,− 1

2 Σ−1] = [b,− 1
2 A]. The moment parameters are

η = [µ, Σ + µµ>] and the log partition function Φ(θ), jointly convex in [b,−A] and [b, A], reads
Φ(θ) = 1

2 (µ
>Σ−1µ + ln |2πΣ|) = 1

2 (b
>A−1b− ln |A|) + n

2 ln 2π.

C.4 Log partition function

Besides acting as a normaliser, the log partition function Φ(θ) is closely related to the cumulant
generating function; moments of P(x|θ) can be obtained by differentiation [Wainwright and
Jordan, 2008, chapter 3]

∂

∂θ
Φ(θ) = EP(x|θ)[φ(x)] =

∫
P(x|θ)φ(x)dx = η

∂2

∂θ∂θ>
Φ(θ) = VP(x|θ)[φ(x)] = EP(x|θ)[(φ(x)− η)(φ(x)− η)>],

which nicely relates the moment η and the exponential parameters θ via ∂
∂θΦ(θ) = η.

For the Gaussian distribution, we obtain

Φ(A, b) : = ln
∫
G(x|b, A)dx = ln

∫
exp

(
−1

2
(x>Ax− 2b>A−1Ax)

)
dx

=
1
2

b>A−1b + ln
∫

exp
(
−1

2
(x−A−1b)>A(x−A−1b)

)
dx

=
1
2

b>A−1b +
n
2

ln 2π − 1
2

ln |A| and

N (x|A−1b, A−1) = e−Φ(A,b)G(x|b, A).

Using convex duality, we can write

−2Φ(A, b) = ln |A|+ min
u

[
u>Au− 2b>u

]
− n ln 2π.

Also, exp
( 1

2 b>A−1b
)
= maxu exp

(
b>u− 1

2 u>Au
)
= maxu G(u|b, A) leads to

∫
G(x|b, A)dx =

√
|2πA−1| exp

(
1
2

b>A−1b
)
=
√
|2πA−1|max

x
G(x|b, A).

Another useful identity for b = 0 characterises the log determinant as a Gaussian integral

ln |A| = n ln 2π − 2Φ(A, 0) = n ln 2π − 2 ln
∫

exp
(
−1

2
u>Au

)
du. (C.1)

C.5 Entropy

Finally, the entropy of a Gaussian variable is given by

H [P(x)] = EP(x) [− ln P(x)] = −
∫

P(x) ln P(x)dx

⇒ H [N (x|µ, Σ)] =
1
2

ln |Σ|+ n
2
(1 + ln 2π) .
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C.6 Relative entropy

The Kullback-Leibler (KL) divergence to a Gaussian is obtained as

KL (Q(x)||P(x)) =
∫

Q(x) ln
Q(x)
P(x)

dx = −H [P(x)]−EQ(x) [ln P(x)]

⇒ KL (N (x|µ, Σ)||P(x)) = −1
2

ln |Σ| − n
2
(1 + ln 2π)−

∫
N (x|µ, Σ) ln P(x)dx.

The relative entropy KL
(
P(x|θ)||P(x|θ̃)

)
= KL

(
θ||θ̃

)
can be expressed using the moment

parameters η and the exponential parameters θ

KL
(
θ||θ̃

)
= η>(θ− θ̃) + Φ(θ̃)−Φ(θ)

= θ̃>(η̃− η) + Φ?(η)−Φ?(η̃) = KL (η||η̃) ,

where Φ?(η) is the convex conjugate of Φ(θ)1. As a result, we see that KL
(
θ||θ̃

)
= KL (η||η̃) is

both convex in θ̃ and η [Seeger, 2003, A.13].
Thus, the Gaussian relative entropy KL (N (x|µ, Σ)||P(x)) is jointly convex in [µ, Σ + µµ>]

or convex in Σ for µ = 0.
Furthermore, the relative entropy KL (N1||N2) between two Gaussians

2 ·KL (N1||N2) = − ln
∣∣∣Σ1Σ−1

2

∣∣∣+ tr
(

Σ1Σ−1
2 − I

)
+ (µ1 − µ2)

>Σ−1
2 (µ1 − µ2)

= − ln
∣∣∣A−1

1 A2

∣∣∣+ tr
(
(Σ1 + µ1µ>1 )A2 − I

)
− 2b>2 µ1 + b>2 A−1

2 b2

is (interestingly) jointly convex in [µ1, Σ1] and [b2, A2].

C.7 Gaussian measure of convex functions

The integral of the negative log potential f (s) = − ln T (s) w.r.t. a general Gaussian N (s|µ, σ2)

ω(µ, σ2) =
∫
N (s|µ, σ2) f (s)ds =

∫
N (s) f (σs + µ)ds

occurs in the KL objective to be minimised in equation 2.15. In the following, we exploit the
Leibniz integral rule

d
dα

∫ b

a
f (x, α)dx =

∫ b

a

∂

∂α
f (x, α)dx + f (b, α)

∂b
∂α
− f (a, α)

∂a
∂α

to show that ω(µ, σ2) is convex in µ and σ whenever f (s) is convex itself. Further, we provide
an example showing that ω(µ, σ2) is not convex in ν = σ2 in general.

We start by showing that ω(µ, σ2) is convex in the mean µ

ωµ =
∂ω

∂µ
=

∫
N (s) f ′ (σs + µ)ds ≥ 0

ωµµ =
∂2ω

∂µ2 =
∫
N (s) f ′′ (σs + µ)ds ≥ 0⇐ f ′′(s) ≥ 0

and in the standard deviation σ

ωσ =
∂ω

∂σ
=

∫
N (s)s f ′ (σs + µ)ds

ωσσ =
∂2ω

∂σ2 =
∫
N (s)s2 f ′′ (σs + µ)ds ≥ 0⇐ f ′′(s) ≥ 0.

1Φ?(η) is roughly equal to the negative entropy of P(x|η) Wainwright and Jordan [2008, chapter 3.6].
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One can even show joint convexity in (µ, σ) by computing

ωµσ = ωσµ =
∫
N (s)s f ′′ (σs + µ)ds

and showing that the determinant D = |Hω| of the Hessian Hω =

[
ωµµ ωσµ

ωσµ ωσσ

]
is non-

negative. We notice that all components of the Hessian Hω have the form ηk =
∫

skπ(s)ds for
k = 0, 1, 2 and π(s) = N (s) f ′′ (σs + µ) ≥ 0⇐ f ′′(s) ≥ 0. We write

D = ωσσωµµ −ω2
σµ = η2η0 − η2

1

and notice immediately D ≥ 0 because the variance v of a random variable with density π(s)
η0

can be expressed as

v =
η2

η0
− η2

1

η2
0
=

D
η2

0
≥ 0.

From now on, we restrict ourselves to Laplace potentials f (s) = − ln T (s) = |s|. From
∂
∂sN (s) = −sN (s), we find

∫ ∞
s0

sN (s)ds = N (s0) and using ∂
∂sN (s|µ, σ2) = µ−s

σ N (s|µ, σ2), we
can deduce

∫ ∞
0 sN (s|µ, σ2)ds = µΦ(µ/σ) + σN (µ/σ), which yields

ωL(µ, σ2) =
∫ ∞

−∞
N (s|µ, σ2)|s|ds =

∫ ∞

0

[
N (s|µ, σ2) +N (s| − µ, σ2)

]
sds

= µΦ
(µ

σ

)
+ σN

(µ

σ

)
− µΦ

(
−µ

σ

)
+ σN

(
−µ

σ

)
= 2µ

[
Φ
(µ

σ

)
− 1

2

]
+ 2σN

(µ

σ

)
.

Already ωL(0, ν) =
√

2
π ν is not convex in ν = σ2.

C.8 Non-convex relative entropy

We pick a 1d log-concave exponential family model P(u) with Laplace prior T (u) = 1
2 exp(−|u|)

and Gaussian likelihood N (u), i.e. X = B = σ2 = 1 and y = 0, hence P(u) = 1
ZN (u)T (u),

Z =
∫
N (u)T (u)du. Further, we choose the class of Gaussians Q(u) = N (u|µ, σ2) as approxi-

mating distribution.
With the equality from appendix C.7 in mind, the Kullback-Leibler divergence is given by

KL(µ, σ2) = KL
(
N (u|µ, σ2)|| 1

Z
N (u)T (u)

)
=
∫ ∞

−∞
N (u|µ, σ2) ln

ZN (u|µ, σ2)

N (u)T (u) du

= −H[N (u|µ, σ2)] + ln Z−
∫ ∞

−∞
N (u|µ, σ2) lnN (u)du−

∫ ∞

−∞
N (u|µ, σ2) ln T (u)du

= C− ln σ +
µ2 + σ2

2
+
∫ ∞

−∞
N (u|µ, σ2)|u|du, C = ln Z− 1

2
+ ln 2

= C− ln σ +
µ2 + σ2

2
+ ωL(µ, σ2).

The general convexity result of ω(µ, σ2) from appendix C.7 implies that KL(µ, σ2) is jointly
convex in (µ, σ).

However, already, the special case KL(0, σ2) = C− 1
2 ln ν+ ν

2 +
√

2
π ν is not convex in ν = σ2

since the second derivative

∂2

∂ν2 KL(0, ν) =
1

2ν2

(
1−

√
ν

2π

)
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changes sign at ν = 2π. Note that this is not in contradiction to the convexity statement in ap-
pendix C.6 since the distributions on the right and left side of the KL-divergence have different
sufficient statistics, which clamps some natural parameters θi and θ̃j to 0. As a result, the path
in η becomes nonlinear; a contradiction requires non-convexity along a linear path.





Appendix D

Inference and Design in Linear Models

D.1 Reparametrisation rules

The following rules can be used to perform changes of variables.

∫
U

φ(u)du =
∫

ξ−1(U )
φ (ξ(ρ))

∣∣∣∣det
(

∂ξ(ρ)

∂ρ>

)∣∣∣∣dρ

P(u) = P (ξ(ρ))

∣∣∣∣det
(

∂ξ(ρ)

∂ρ>

)∣∣∣∣
du =

∣∣∣∣det
(

∂ξ(ρ)

∂ρ>

)∣∣∣∣dρ

P(u)du = P (ξ(ρ))dρ

D.2 Invariance of maximum likelihood estimation

We start from the original likelihood P(y|u) and a likelihood P(y|ξ(ρ)) using a different coor-
dinate system u = ξ(ρ). The maximum likelihood estimators of u and ρ are related by

û = arg max
u

P(y|u) = ξ

(
arg max

ρ
P(y|ξ(ρ))

)
= ξ (ρ̂) = ξ̂(ρ)

implying that it does not matter whether we estimate the variance or the standard deviation of
a random variable via maximum likelihood since they can be converted into one another post
hoc.

The second type of invariance is about the data yi, i = 1..m. By the transformation

û = arg max
u

P(y|u) = arg max
u

P (ξ(ρ)|u)
∣∣∣∣det

(
∂ξ(ρ)

∂ρ>

)∣∣∣∣
= arg max

u
P (ξ(ρ)|u) = arg max

u
Pξ (ρ|u) ,

we can see that the estimate û will be the same if we use a log-normal distribution Pξ or a
normal distribution P on the log of the data.

D.3 Invariance of Bayesian inference

Marginal likelihood

In addition to the invariances of general maximum likelihood estimation (appendix D.2), the
marginal likelihood of a hyperparameter θ is invariant to reparametrisation of the latent vari-
ables ξ : ρ 7→ u
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P(y|θ) =
∫

P(u)P(y|u)du

=
∫ Q(ρ)︷ ︸︸ ︷

P (ξ(ρ))

∣∣∣∣det
(

∂ξ(ρ)

∂ρ>

)∣∣∣∣
Q(y|ρ)︷ ︸︸ ︷

P (y|ξ(ρ))

dρ︷ ︸︸ ︷∣∣∣∣det
(

∂ξ(ρ)

∂ρ>

)∣∣∣∣−1

du

=
∫

Q(ρ)Q(y|ρ)dρ =: Q(y|θ).

Decision after inference

The posterior parametrised with u = ξ(ρ) is given by

P(u|y) =
P(u)P(y|u)

P(y)
=

Q(ρ)Q(y|ρ)
Q(y)

∣∣∣∣det
(

∂ξ(ρ)

∂ρ>

)∣∣∣∣−1

= Q(ρ|y)
∣∣∣∣det

(
∂ξ(ρ)

∂ρ>

)∣∣∣∣−1

,

therefore the Bayes estimator based on the minimum average loss

u? = arg min
ũ

∫
`(u, ũ)P(u|y)du = arg min

ũ

∫
` (ξ(ρ), ũ)Q(ρ|y)dρ

= arg min
ξ(ρ̃)

∫
` (ξ(ρ), ξ(ρ̃))Q(ρ|y)dρ = ξ

(
arg min

ρ̃

∫
`ξ (ρ, ρ̃)Q(ρ|y)dρ

)
= ξ(ρ?)

as measured by the loss function `(u, ũ) is invariant to a reparametrisation ξ if the loss is also
transformed (into `ξ).

D.4 Cumulant based entropy approximation

Suppose, we are given an n-dimensional density P(x) with mean vector m = EP[x] and covari-
ance matrix V = VP[x]. A moment κijk of P(x) is defined as the scalar expectation EP[xixjxk].
A cumulant κi,j,k [McCullagh, 1987, ch. 2] can be written in terms of the moments

κi,j = κij − κiκ j

κi,j,k = κijk − κijκk − κikκ j − κiκ jk + 2κiκ jκk.

The Gram-Charlier A series [Barndorff-Nielsen and Cox, 1989] allows to expand the distribu-
tion P(x) in terms of the GaussianN (x|m, V) having the same mean and variance as P(x) and
an infinite sum composed of sums cumulants of rising order weighted with Hermite polyno-
mials hijk..(x)

P(x) = N (x|m, V)

(
1 +

1
3! ∑

i,j,k
κi,j,khijk(x) +

1
4!

...

)
.

This allows to approximate the differential entropy [Hulle, 2005] neglecting higher order terms
by

H[P(x)] ≈ H[N (x|m, V)]− 1
12

(
∑

i
(κ̃i,i,i)2 + 3 ∑

i 6=j
(κ̃i,i,j)2 +

1
6 ∑

i<j<k
(κ̃i,j,k)2

)
,

where H[N (x|m, V)] = (ln |V| + n ln 2π + n)/2 is the entropy of the best Gaussian approx-
imation, from which a sum of squared standardised cumulants κ̃i,j,k := κi,j,k

σiσjσk
= κi,j,k√

κi,iκ j,jκk,k
is

subtracted. This is effectively a decomposition of H[P(x)] into a component based on the scale
in terms of the Gaussian entropy and the shape given by the sum of third order standardised
cumulants.



Appendix E

Convex Inference Relaxations and
Algorithms

E.1 Convexity of log determinant

It is well known [Boyd and Vandenberghe, 2004], that γ−1 7→ ln |A| with A = X>X + B> f (Γ)B
is concave for f j(γj) = γ−1

j . We will show that γ 7→ ln |A| is convex whenever all scalar
functions ln f j(γj) are convex. We write f (γ) or f (Γ) to refer to the matrix with components
f j(γj) on the diagonal. There is an elaborate way of getting the general result and a simple and
intuitive way for a special case pointed out by Manfred Opper. We will first present the simple
approach and then look at the general case.

First of all, log-convexity of f (γ) is equivalent to d2

dγ2 ln f (γ) ≥ 0 since f (γ) ≥ 0 will be
twice differentiable in the following.

d ln f (γ)
dγ

=
f ′(γ)
f (γ)

,
d2 ln f (γ)

dγ2 =
f ′′(γ) f (γ)− f ′(γ) f ′(γ)

[ f (γ)]2
≥ 0⇔ f ′′(γ) f (γ) ≥

[
f ′(γ)

]2 (E.1)

Intuitive and simple approach

Making use of equation C.1, we can rewrite the log determinant as a negative Gaussian integral
ln |A| = n ln 2π − 2 ln

∫
exp(− 1

2 u>Au)du. If the map (u, γ) 7→ u>Au is jointly convex, then
(u, γ) 7→ exp(− 1

2 u>Au) is jointly log-concave. The marginalisation theorem due to Prékopa
[Bogachev, 1998, §1.8] states that marginals of log-concave functions are log-concave. Conse-
quently, the Gaussian integral γ 7→

∫
exp(− 1

2 u>Au)du is log-concave implying convexity of
γ 7→ ln |A|. So, when is (u, γ) 7→ u>Au = u>X>Xu + ∑

q
j=1 s2

j f (γj), s = Bu jointly convex?
Obviously, exactly if (s, γ) 7→ s2 f (γ) is jointly convex since convex functions are closed un-
der affine transformations of the input. Computing the determinant of the Hessian, we get
|Hs,γ| = 2 f (γ) · s2 f ′′(γ) − [2s f ′(γ)]2, which is positive for f (γ) · f ′′(γ) ≥ 2 [ f ′(γ)]2. This
condition is stricter than the one imposed by equation E.1, hence f (γ) = γ−1 is covered but
f (γ) = eγ not.

General case

We exploit the result that a a function φ(γ) is jointly convex in γ iff. φ is convex along all lines.
Formally the scalar function φ(t) := φ(γt), γt := p + t · d ≥ 0 has to be convex for all points
p ∈ Rq and directions d ∈ Rq. In order to show this, we will show that the second derivative
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φ′′(t) is always non-negative. We use the calculus of appendix A.1.

φ(t) = ln |At| = ln
∣∣∣X>X + B>FtB

∣∣∣ , Ft = f (p + t · d) ∈ Rq×q

dφ(t) = tr
(

A−1
t B>F′tDB

)
dt, D = diag(d), F′t = f ′(p + t · d)

d2φ(t) = tr
(

DBdA−1
t B>F′t + DBA−1

t B>dF′t
)

dt

= tr
(

DBA−1
t

[
−dAtA−1

t B>F′t + B>dF′t
])

dt

= tr
(

DBA−1
t B>

[
−F′tDBA−1

t B>F′t + F′′t D
])

dt2, F′′t = f ′′(p + t · d)
φ′′(t) = tr

(
DStD

[
F′′t − F′tStF′t

])
, St = BA−1

t B>

= tr
(
F′tDStDF′t [Gt − St]

)
, Gt,jj =

f ′′j (pj + t · dj)[
f ′j (pj + t · dj)

]2

Since St is symmetric positive semidefinite (spsd), F′tDStDF′t is also spsd and hence φ′′(t) will
be non-negative if the matrix Gt − St is spsd, which is the case if z>(Gt − St)z ≥ 0 for all z.

z>(Gt − St)z = z>Gtz− z>BA−1
t B>z

= z>Gtz +
(

min
u

u>Atu− 2z>Bu
)

= z>(F′t)
−1F′′t (F

′
t)
−1z +

(
min

u
u>X>Xu + uB>FtBu− 2z>Bu

)
≥ z>(F′t)

−1F′′t (F
′
t)
−1z +

(
min

u
u>B>FtBu− 2z>Bu

)
= z>(F′t)

−1F′′t (F
′
t)
−1z +

(
min
s=Bu

s>Fts− 2z>s
)

= min
s=Bu

z>(F′t)
−1F′′t (F

′
t)
−1z + s>Fts− 2z>s

= min
s̃

z̃>FtF′′t (F
′
t)
−2z̃ + s̃>s̃− 2z̃>s̃, s̃ = F

1
2
t s, z̃ = F−

1
2

t z

Using equation E.1, which is equivalent to FtF′′t (F
′
t)
−2 � I, we can further lower bound the

above expression by

z>(Gt − St)z ≥ min
s̃

z̃>z̃ + s̃>s̃− 2z̃>s̃ ≥ min
s̃
‖z̃− s̃‖2 ≥ 0,

which completes the proof.

E.2 Concavity of log determinant

We will show that γ 7→ 1> ln f (γ) + ln |A| with A = X>X + B>[ f (Γ)]−1B is concave whenever
all scalar functions f j(γj) ≥ 0 are concave. by induction over the number of terms r in the sum
j = 1..q.

ψr(γ) =
r

∑
j=1

ln f j(γj) + ln

∣∣∣∣∣X>X +
r

∑
j=1

bjb>j
1

f j(γj)

∣∣∣∣∣
First of all, ln is a concave increasing function, therefore the concatenation ln f j(γj) is concave
[Boyd and Vandenberghe, 2004, equation 3.10]. Second, ψ0(γ) is constant and therefore con-
cave. Now, supposing that ψr−1(γ) is concave, we will show that ψr(γ) is concave. We split

ψr(γ)− 1> ln f (γ) =
r−1

∑
j=1

ln f j(γj) + ln fr(γr) + ln

∣∣∣∣∣X>X +
r−1

∑
j=1

bjb>j
1

f j(γj)
+ brb>r

1
fr(γr)

∣∣∣∣∣
= f<r(γ<r) + ln fr(γr) + ln

∣∣∣∣A<r + brb>r
1

fr(γr)

∣∣∣∣
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and rewrite using the matrix determinant lemma (appendix A.1.2) into

ψr(γ) = f<r(γ<r) + ln fr(γr) + ln |A<r| − ln fr(γr) + ln
(

fr(γr) + b>r A−1
<r br

)
= ψr−1(γ) + ln

(
fr(γr) + b>r A−1

<r br

)
.

Therefore, using monotonicity and concavity of the logarithm, we only need to show concavity
of b>r A−1

<r br since fr(γr) is concave by assumption. Using Fenchel duality (appendix B.4), we
can write

1
2

b>r A−1
<r br = max

u
b>r u− 1

2
u>A<ru

= max
u

b>r u− 1
2

u>X>Xu− 1
2

r−1

∑
j=1

s2
j

f j(γj)
, s = Bu.

Thus, the proof reduces to show that s2
j /
(
− f j(γj)

)
is jointly convex in (sj, γj) using Prékopa’s

theorem as in the simple approach in the previous section. The determinant of the Hessian
|Hs,γ| = −2 s2

f 2
f ′′
f is positive since f ≥ 0 and f ′′ ≤ 0, which completes the proof.

The case when X>X is singular can be dealt with by starting from X>X+ εI and considering
the limit of ε→ 0, which exists since all functions are assumed to be continuous.

E.3 Convexity of height functions

We focus on a single continuous symmetric potential T (s) ≥ 0 that is strongly super-Gaussian,
i.e. g(x) = ln T (s) is convex in x := s2 ≥ 0 and decreasing. We show that

• h(γ) is convex if and only if g(s) = ln T (s) is concave in s (T (s) is log-concave).

Using Fenchel duality [Rockafellar, 1970, chapter 12], we can represent g(x) by the relationship
g(x) = maxp<0 xp − g∗(p) and hence g(s) = maxγ>0− 1

2γ s2 − g∗(− 1
2γ ) substituting x := s2

and p := − 1
2γ < 01. Note that the maximum is attained for p = g′(x). As a result, we obtain a

Gaussian lower bound on the potential [Palmer et al., 2006]

T (s) = max
γ>0

exp
(
− s2

2γ
− h(γ)

2

)
, h(γ) = 2g∗

(−1
2γ

)
⇔ −2 ln T (s) = min

γ>0

s2

γ
+ h(γ). (E.2)

”⇐”: Now, for h(γ) convex, the expression s2/γ + h(γ) in equation E.2 is jointly convex.
Convexity is preserved under marginalisation (see appendix B.2) which implies concavity of
ln T (s) and concludes one direction of the equivalence.

”⇒”: In turn, we can express h(γ) by conjugate duality as

h(γ) = max
s≥0

f (s, γ), f (s, γ) := − 1
γ

s2 − 2g(s)

= max
x≥0

f (x, γ), f (x, γ) := − 1
γ

x− 2g(x) (E.3)

= f (x∗(γ), γ), x∗(γ) := arg max
x

f (x, γ).

We obtain x∗(γ) be setting ∂
∂x f (x, γ) = 0 and solving for x yielding g′(x∗) = − 1

2γ . Convexity
of g(x) implies g′′(x) ≥ 0 therefore invertibility of g′(x), thus the relation γ 7→ x∗ is unique.

1The values p are negative since the first derivative of g(x) is negative, i.e. g(x) is decreasing.
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As a next step, we compute the derivative d
dγ x∗(γ) by differentiating both sides of g′(x∗) =

− 1
2γ w.r.t. γ, which leads to

d
dγ

x∗(γ) =
1

2γ2g′′(x∗)
≥ 0, since g(x) is convex.

From x′∗(γ) ≥ 0 we deduce that γ 7→ x∗ is increasing, which also holds for γ 7→ s∗ =
√

x∗ since
the square root is increasing. Similarly, we compute s∗(γ) by equating ∂

∂s f (s, γ) with 0, which
gives g′(s∗) = − 1

γ s∗ < 0 and can be used to compute

h′(γ) =
∂

∂γ
f (s∗(γ), γ) =

1
γ²

s2
∗ −


0︷ ︸︸ ︷

1
γ

s∗ + g′(s∗)

 ∂

∂γ
s∗(γ) =

1
γ²

s2
∗ =

[
g′(s∗)

]2 .

The concavity of g(s) implies a monotonic decrease of g′(s), which combined with g′(s) < 0
and the above derivation shows that the map s∗ 7→ h′(γ) is an increasing one due to the square
around g′(s∗). Finally, we can conclude from the aforementioned fact that γ 7→ s∗ is increasing
that γ 7→ h′(γ) is monotonically increasing, too, and therefore h(γ) is a convex function.

E.4 Generic inner loop computations

During the inner loop minimisation, the scalar functions defined by equation 3.11

h∗(s) =
σ2

2
min

γ
h(s, γ), h(s, γ) = h∪(γ) +

(
s2

σ2 + z2

)
γ−1 + z1γ− z3 ln γ

that belong to the potential T (s) as well as their derivatives h∗′(s) and h∗′′(s) need to be eval-
uated for many different values of s. We dropped the subscript to simplify notation.

The minimiser γ∗ = arg minγ h(s, γ) is found by standard convex optimisation techniques
such as the Newton algorithm yielding h∗(s) = h(s, γ∗). Using the total derivative and the fact
∂

∂γ h(s, γ∗) = 0, we get

h∗′(s) =
d
ds

h(s, γ∗) =
σ2

2

(
∂

∂s
h(s, γ∗) +

∂

∂γ
h(s, γ∗)

dγ∗
ds

)
=

σ2

2
∂

∂s
h(s, γ∗) =

s
γ∗

=: ψ(s, γ∗),

where we defined the function ψ(s, γ). Furthermore, the constraint

∂

∂γ
h(s, γ∗) = hγ(s, γ∗) = h′∪(γ∗)−

(
s2

σ2 + z2

)
γ−2
∗ + z1 − z3γ−1

∗ = 0

holds for all s, hence we have

d
ds

hγ(s, γ∗) = 0 =
∂

∂s
hγ(s, γ∗) +

∂

∂γ
hγ(s, γ∗)

dγ∗
ds

= − 2s
σ2 γ−2

∗ +

[
h′′∪(γ∗) + 2

(
s2

σ2 + z2

)
γ−3
∗ + z3γ−2

∗

]
dγ∗
ds

⇔ dγ∗
ds

=
sγ∗

s2 + γ∗κ
, κ = σ2z2γ−1

∗ +
σ2

2
γ2
∗h
′′
∪(γ∗) +

σ2

2
z3.

Using the total derivative once more, this can be combined into the second derivative

h∗′′(s) =
d
ds

h∗′(s) =
d
ds

ψ(s, γ∗) =
(

∂

∂s
ψ(s, γ∗) +

∂

∂γ
ψ(s, γ∗)

dγ∗
ds

)
=

1
γ∗
− s

γ2∗

dγ∗
ds

=
κ

s2 + γ∗κ
.
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We see, that in order to evaluate h∗(s), h∗′(s) and h∗′′(s), the only things we need to compute
from the potential T (s) is h∪(γ) and h′′∪(γ). In the following, we show how these can be
computed only from g(x) = ln T (s), where s2 = x and its derivatives g′(x) and g′′(x).

Starting from the definition of h(γ) given in equation E.3, we can compute h(γ) using a
one-dimensional maximisation

h(γ) = max
x≥0
− f (x, γ), f (x, γ) =

1
γ

x + 2g(x).

All we need is the first and second derivative

∂ f
∂x

=
1
γ
+ 2g′(x)

∂2 f
∂x2 = 2g′′(x)

in order to apply Newton’s method to compute x∗ and hence h(γ) = − f (x∗, γ). Using the
same principles as above, we can compute

h′(γ) = − ∂

∂γ
f (x∗, γ)− ∂

∂x
f (x∗, γ)

dx∗
dγ

= − ∂

∂γ
f (x∗, γ) =

1
γ2 x∗ = − fγ(x∗, γ)

and from the optimality condition ∂
∂x f (x∗, γ) = fx(x∗, γ) = 0 that holds and further from

d
dγ fx(x∗, γ) = 0, we get

d
dγ

fx(x∗, γ) = 0 =
∂

∂γ
fx(x∗, γ) +

∂

∂x
fx(x∗, γ)

dx∗
dγ

= − 1
γ2 + 2g′′(x∗)

dx∗
dγ

⇔ dx∗
dγ

=
1

2g′′(x∗)γ2 .

Hence, we can deduce

h′′(γ) = − d
dγ

fγ(x∗, γ) = − ∂

∂γ
fγ(x∗, γ)− ∂

∂x
fγ(x∗, γ)

dx∗
dγ

= − 2
γ3 x∗ +

1
2g′′(x∗)γ4 = γ−4

(
1

2g′′(x∗)
− 2x∗γ

)
.

Assuming h∪(γ) = h(γ)− h∩(γ) and h′′∩(γ) to be known, we can summarise

κ = σ2z2γ−1
∗ +

σ2

2
γ2
∗
[
h′′(γ∗)− h′′∩(γ∗)

]
+

σ2

2
z3

= σ2z2γ−1
∗ +

σ2

2
γ−2
∗

(
1

2g′′(x∗)
− 2x∗γ∗

)
− σ2

2
γ2
∗h
′′
∩(γ∗) +

σ2

2
z3

=
σ2

2

(
2(z2 − x∗)γ−1

∗ +
1

2γ2∗g′′(x∗)
− γ2

∗h
′′
∩(γ∗) + z3

)
,

which can be used to compute h∗′′(s) = κ/(s2 + γ∗κ).

E.5 Generic inner loop for log-concave potentials

The result of appendix E.4 applies to any super Gaussian potential, however in the special case
of log-concave potentials and the φ

(2)
∪ (γ) bound, where z1 = z3 = 0, the expressions for h∗(s),

h∗′(s) and h∗′′(s) become very simple. Using appendix E.3 and section 3.5.3, we have

h∗(s) = σ2 min
γ≥0

1
2

h(γ) +
s2 + ν

2σ2γ
where

1
2

h(γ) = max
s̃≥0
− s̃2

2σ2γ
+

β

σ2 s̃− ln T (s̃),
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which can be combined into a minimax expression for the penaliser of h∗(s) as a function mod-
ulated by the marginal variances ν = VQ[s|D] of the posterior

h∗(s) = σ2 min
γ≥0

(
max
s̃≥0

(
− s̃2

γ
+

β

σ2 s̃− ln Tj(s̃)
)
+

s2 + ν

γ

)
.

The inner expression fi(s̃) := −s̃2/γ + βs̃/σ2 − ln T (s̃) is necessarily maximised for

0 = f ′i (s̃) = −2
s̃
γ
+

β

σ2 −
T ′(s̃)
T (s̃) ⇔ 2

s̃
γ
=

β

σ2 −
T ′(s̃)
T (s̃)

and its maximiser is denoted by s̃∗γ and is a function of γ. The remaining outer minimum of
fo(γ) := (s2 − (s̃∗γ)2 + ν)/γ + βs̃∗γ/σ2 − ln T (s̃∗γ) is attained if γ obeys

0 = f ′o(γ) =
−2s̃∗γ

ds̃∗γ
dγ γ− (s2 − (s̃∗γ)2 + ν)

γ2 +


2 s̃

γ︷ ︸︸ ︷
β

σ2 −
T ′(s̃∗γ)
T (s̃∗γ)


ds̃∗γ
dγ

=
−(s2 − (s̃∗γ)2 + ν)

γ2 ⇔ s̃∗γ = sign(s)
√

s2 + ν,

where sign(x) ∈ {±1} and where we used the conditions for the inner maximum in the deriva-
tion to finally obtain

h∗(s) = σ2 min
γ≥0

(
s2 + ν− (s̃∗γ)2

γ
+

β

σ2 s̃∗γ − ln T (s̃∗γ)
)

= βsign(s)
√

s2 + ν−σ2 ln T
(

sign(s)
√

s2 + ν
)

.

The derivatives of h∗(s) are then very simple using g(s) := ln T (s):

h∗(s) = βς− σ2g (ς) , ς = sign(s)
√

s2 + ν

h∗′(s) =
[
β− σ2g′ (ς)

] s
ς

h∗′′(s) =

[
β− σ2

(
g′ (ς) +

s2ς

ν
g′′ (ς)

)]
ν

ς3 .

As a next step, we compute the minimum value of γ∗ in h∗(s). We start from the variational
representation of a super-Gaussian potential (see equation 3.4 auf Seite 34)

ln T (s)− βs
σ2 = max

γ

[
− s2

2σ2γ
− 1

2
h(γ)

]
and represent the equation using x = s2, p = − 1

2σ2γ
and g(s) = ln T (s)

g(
√

x)− β
√

x
σ2 = max

p≤0

[
xp− 1

2
h(γ(p))

]
,

where γ depends on p. Since the expression is in Legendre form (see appendix B.4), we know
that the optimal value equals the derivative of the function on the left side

− 1
2σ2γ∗

= p∗ = arg max
p≤0

[
xp− 1

2
h(γ(p))

]
=

d
dx

(
g(
√

x)− β
√

x
σ2

)
.

We can simplify that expression and obtain

− 1
2σ2γ∗

=
g′(
√

x)− β/σ2

2
√

x
=

g′(s)− β/σ2

2|s|

⇒ γ∗ =

√
x

β− σ2g′(
√

x)
,
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where we have to set x = s2 + ν = ς2 as in h∗(s) to finally obtain the inner loop update
expression for γ

γ∗ =
ς

β− σ2g′(ς)
=

s
h∗′(s)

.

E.6 SBL and variational bounds

We have two exact representations for symmetric super-Gaussian potentials (chapters 3.2 and
3.3)

ln Tj(sj) =


maxγj − 1

2

[
s2

j

σ2γj
+ h(γj)

]
α) variational

ln
∫
N (sj|0, σ2γj)Pj(γj)dγj = ln

∫
exp

(
− 1

2

[
s2

j

σ2γj
+ pj(γj)

])
dγj β) scale mixture

where pj(γj) = ln(2πσ2γj)− 2 ln Pj(γj) and ln T (s) = ∑j ln Tj(sj). Three tools are used in the
following:

• i) The maximum (variational) representation of the Gaussian partition function (equa-
tion 2.18 auf Seite 22)

ln Z̃(β, γ) = ln
∫
N (y|Xu, σ2I) exp

(
(β>s− 1

2
s>Γ−1s)/σ2

)
du

c
= max

u
−1

2
[
R(u, γ)/σ2 + ln |A|

]
where s = Bu, R(u, γ) = ‖Xu− y‖2 + s>Γ−1s− 2β>s and A = X>X + B>Γ−1B,

• ii) the convex dual representation of the log determinant (equation 3.8 auf Seite 39)

−1
2

ln |A| = min
z
−1

2

[
z>γ−1 − g∗(z)

]
and

• iii) the inequality ∫
max

x
f (x, u)du ≥ max

x

∫
f (x, u)du.

Starting from the two representations α) and β) and using the facts i-iii), we can derive to
the same lower bound (equation 3.13 auf Seite 43 and appendix E.5 auf Seite 143) to the log
partition function ln Z:

ln Z c
= ln

∫
N (y|Xu, σ2I)∏

j
Tj(sj)du

α)
= ln

∫
max

γ
N (y|Xu, σ2I) exp

(
−1

2

[
s>Γ−1s/σ2 + h(γ)

])
du

iii)
≥ max

γ
ln
∫
N (y|Xu, σ2I) exp

(
−1

2

[
(s2)>(σ2γ)−1 + h(γ)

])
du

i)
= max

γ,u
−1

2
[
R(u, γ)/σ2 + ln |A|+ h(γ)

]
ii)
= max

γ,u,z
−1

2

[
R(u, γ)/σ2 + z>γ−1 − g∗(z) + h(γ)

]
= max

γ,u,z
−1

2

[
‖Xu− y‖2 /σ2 − g∗(z) + (s2 + σ2z)>(σ2γ)−1 + h(γ)

]
α)
= max

u,z
−1

2

[
‖Xu− y‖2 /σ2 − g∗(z)− 2 ln T (

√
s2 + σ2z)

]
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ln Z c
= ln

∫
N (y|Xu, σ2I)∏

j
Tj(sj)du

β)
= ln

∫ ∫
N (y|Xu, σ2I) exp

(
−1

2

[
s>Γ−1s/σ2 + p(γ)

])
dudγ

i)
= ln

∫
exp

(
−1

2

[
min

u
R(u, γ)/σ2 + ln |A|+ p(γ)

])
dγ

iii)
≥ max

u
ln
∫

exp
(
−1

2
[
R(u, γ)/σ2 + ln |A|+ p(γ)

])
dγ

ii)
= max

u
ln
∫

max
z

exp
(
−1

2

[
R(u, γ)/σ2 + z>γ−1 − g∗(z) + p(γ)

])
dγ

iii)
≥ max

u,z
ln
∫

exp
(
−1

2

[
R(u, γ)/σ2 + z>γ−1 − g∗(z) + p(γ)

])
dγ

= max
u,z
−1

2

[
‖Xu− y‖2 /σ2 − g∗(z)− 2 ln

∫
exp

(
−1

2

[
(s2 + σ2z)>(σ2γ)−1 + p(γ)

])
dγ

]
β)
= max

u,z
−1

2

[
‖Xu− y‖2 /σ2 − g∗(z)− 2 ln T (

√
s2 + σ2z)

]



Appendix F

Gaussian Process Classification

F.1 Derivatives for VB with ς-parametrisation

We start by some notational remarks. Partial derivatives w.r.t. one single parameter such as
∂Aς

∂ςi
or ∂bς

∂ςi
stay matrices or vectors, respectively. Lowercase letters {a, b, c}ς indicate vectors,

upper case letters {A, B, C}ς stand for the corresponding diagonal matrices with the vector as
diagonal. The dot notation applies to both lower and uppercase letters and denote derivatives
w.r.t. the variational parameter vector ς.

ȧς :=
[

∂aςi

∂ςi

]
i
=

∂aς

∂ς
, vector

äς :=
[

∂2aςi

∂ς2
i

]
i
=

∂2aς

∂ς2 , vector

Ȧς := Dg (ȧς)

The operators Dg : Rn → Rn×n and dg : Rn×n → Rn manipulate matrix diagonals. The result
of Dg(x) is a diagonal matrix X containing x as diagonal, whereas dg(X) returns the diagonal
of X as a vector. Hence, we have Dg (dg(x)) = x, but in general dg (Dg(X)) = X does only
hold true for diagonal matrices.

F.1.0.1 Some shortcuts used later onwards:

K̃ς :=
(

K−1 − 2Aς

)−1 condK small
= K−K

(
K− 1

2
A−1

ς

)−1

K

b̃ς := Dg(y)bς = y� bς

lς := K̃ςb̃ς =
(

K−1 − 2Aς

)−1
(y� bς)

∂lς

∂ς j
= K̃ς

(
2

∂Aς

∂ς j
lς + y� ∂bς

∂ς j

)
∂lς

∂θi
= K̃ςK−1 ∂K

∂θi
K−1K̃ς (y� bς)

L̇ς :=
∂lς

∂ς>
= K̃ς

(
2Dg(lς)Ȧς + Dg(y)Ḃς

)
147
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rς := ḃς � y� lς + dg
(

lςl>ς Ȧς

)
= ḃς � y� lς + lς � lς � ȧς

∂rς

∂ς j
= y� lς �

∂ḃς

∂ς j
+ ḃς � y� ∂lς

∂ς j
+ 2lς � ȧς �

∂lς

∂ς j
+ lς � lς �

∂ȧς

∂ς j

Ṙς :=
∂rς

∂ς>
= Dg

(
y� ḃς + 2lς � ȧς

)
L̇ς + Dg

(
lς �

(
y� b̈ς + lς � äς

))
= Dg

(
y� ḃς + 2lς � ȧς

)
K̃ςDg

(
y� ḃς + 2lς � ȧς

)
+ Dg

(
lς �

(
y� b̈ς + lς � äς

))
F.1.0.2 First derivatives w.r.t. variational parameters ςi yielding the gradient

ln ZVB = c>ς 1 +
1
2

b̃>ς K̃ςb̃ς −
1
2

ln |I− 2AςK| (F.1)

∂ ln ZVB

∂ςi
=

∂ci

∂ςi
+ b̃>ς K̃ς

[
y� ∂bς

∂ςi
+

∂Aς

∂ςi
K̃ςb̃ς

]
+ tr

(
(I− 2AςK)−>K

∂Aς

∂ςi

)
lς,K̃ς
=

∂ci

∂ςi
+ l>ς

[
y� ∂bς

∂ςi
+

∂Aς

∂ςi
lς

]
+ tr

(
K̃ς

∂Aς

∂ςi

)
∂ ln ZVB

∂ς
=

[
∂ci

∂ςi

]
i
+ ḃς � y�

(
K̃ςb̃ς

)
+ dg

(
K̃ςb̃ςb̃>ς K̃ςȦς

)
+ dg

(
K̃ςȦς

)
lς
=

[
∂ci

∂ςi

]
i
+ ḃς � y� lς + dg

(
lςl>ς Ȧς

)
+ dg

(
K̃ςȦς

)
rς
=

[
∂ci

∂ςi

]
i
+ rς + dg

(
K̃ςȦς

)
= ċς + lς �

(
ḃς � y + lς � ȧς

)
+ dg

(
K̃ς

)
� ȧς

F.1.0.3 Second derivatives w.r.t. variational parameters ςi yielding the Hessian

∂2 ln ZVB

∂ς j∂ςi
=

∂2ci

∂ς j∂ςi
+

∂rς,i

∂ς j
+ tr

(
2K̃ς

∂Aς

∂ς j
K̃ς

∂Aς

∂ςi
+ K̃ς

∂2Aς

∂ς j∂ςi

)
∂2 ln ZVB

∂ς∂ς>
=

[
∂2ci

∂ς2
i

]
ii
+

∂rς

∂ς>
+ 2

(
K̃ς Ȧς

)
�
(
K̃ς Ȧς

)>
+ Dg

(
dg(K̃ς)� äς

)
= C̈ς + Ṙς + 2

(
K̃ςȦς

)
�
(
K̃ςȦς

)>
+ Dg

(
dg(K̃ς)� äς

)
F.1.0.4 Mixed derivatives w.r.t. hyper- θi and variational parameters ςi

∂2 ln ZVB

∂θi∂ς
= ȧς �

∂

∂θi

(
lς � lς + dg

(
K̃ς

))
+ ḃς � y� ∂lς

∂θi

= ȧς �
(

2lς �
∂lς

∂θi
+ dg

(
K̃ςK−1 ∂K

∂θi
K−1K̃ς

))
+ ḃς � y� ∂lς

∂θi

F.1.0.5 First derivatives w.r.t. hyperparameters θi

For a gradient optimisation with respect to θ, we need the gradient of the objective ∂ ln ZB/∂θ

∂ ln ZVB

∂θi
=

1
2

b̃>ς K̃ςK−1 ∂K
∂θi

K−1K̃ςb̃ς + tr
(
(I− 2AςK)−>Aς

∂K
∂θi

)
lς
=

1
2

l>ς K−1 ∂K
∂θi

K−1lς + tr
(
(I− 2AςK)−>Aς

∂K
∂θi

)
.
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F.2 Derivatives for VB with γ-parametrisation

We compute the partial derivatives ∂φ
∂γ , ∂φ

∂θ of

φ(γ, θ) := −1
2

ln ZVB = ln |Kθ + Γ| − ln |Γ|+ h(γ)− β>
(

K−1
θ + Γ−1

)−1
β

= ln
∣∣K̃θ

∣∣− ln |Γ|+ h(γ)− β>K̂θβ,

where we assume that β does not depend on θ and define K̃θ = Kθ + Γ, K̂θ = (K−1
θ + Γ−1)−1

as well as the shorthands v := K̂θβ, V = dg(v) and w = K−1
θ v = K−1

θ K̂θβ.

dφ = tr
(

K̃−1
θ (dKθ + dΓ)

)
+
[
−γ−1 + h′(γ)

]>
dγ

−β>K̂θ

(
Γ−1dΓΓ−1 + K−1

θ dKθK−1
θ

)
K̂θβ− 2dβ>K̂θβ

∂φ

∂γ
= dg

(
K̃−1

θ

)
− γ−1 + h′(γ)−

(
v� γ−1

)2
− 2v� β′

∂φ

∂θi
= tr

([
K̃−1

θ −K−1
θ vv>K−1

θ

] ∂Kθ

∂θi

)
= tr

([
K̃−1

θ −ww>
] ∂Kθ

∂θi

)
Computing the Hessian ∂2φ

∂γ∂γ> requires a bit more work

d2φ = tr(dK̃−1
θ dΓ + K̃−1

θ

0︷︸︸︷
d2Γ ) +

ξ︷ ︸︸ ︷[
γ−2 + h′′(γ)

]>
(dγ)2−

ρ︷ ︸︸ ︷
d
(

β>K̂θΓ−1dΓΓ−1K̂θβ
)
−2d(v>dβ)

= −dg
(

K̃−1
θ dΓK̃−1

θ

)>
dγ + ξ − ρ− 2dβ>

(
dK̂θβ + K̂θdβ

)
− 2v>d2β

= −(dγ)>
(

K̃−1
θ � K̃−1

θ

)
dγ + ξ − ρ− 2dβ>

(
K̂θdΓΓ−2K̂θβ + K̂θdβ

)
− 2v>d2β

= −(dγ)>
(

K̃−1
θ � K̃−1

θ

)
dγ + ξ − ρ− 2dβ>K̂θ

(
Γ−2Vdγ + dβ

)
− 2v>d2β

∂2φ

∂γ∂γ>
= −K̃−1

θ � K̃−1
θ + Γ−2 + dg

[
h′′(γ)

]
− 2VΓ−2K̂θ

(
Γ−2V + 2diag(β′)

)
−2K̂θ� (β′β′>) + 2Γ−3V2 − 2Vdiag(β′′),

where we used the derivation

ρ := β>
[
d
(

K̂θ{Γ−1dΓΓ−1}K̂θ

)]
β + 2β>K̂θΓ−1dΓΓ−1K̂θdβ

= 2β>
[
K̂θΓ−2dΓK̂θΓ−2dΓK̂θ− K̂θΓ−3(dΓ)2K̂θ

]
β + 2β>K̂θΓ−1dΓΓ−1K̂θdΓβ′

= 2β>K̂θ

[
dΓΓ−2K̂θΓ−2dΓ− Γ−3(dΓ)2] K̂θβ + 2v>dΓΓ−2K̂θdiag(β′)dγ

= 2v>dΓΓ−2K̂θΓ−2dΓv− 2
[
γ−3 � v2]> (dγ)2 + 2(dγ)>VΓ−2K̂θdiag(β′)dγ

= 2(dγ)>VΓ−2K̂θ

(
Γ−2V + diag(β′)

)
dγ− 2

[
γ−3 � v2]> (dγ)2 .

F.3 Derivatives for KL

The lower bound ln ZB to the log marginal likelihood ln Z is given by equation 4.13 as

ln Z ≥ = ln ZB(m, V) = a(y, m, V) +
1
2

ln
∣∣∣VK−1

∣∣∣+ n
2
− 1

2
m>K−1m− 1

2
tr
(

VK−1
)

,
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where we used the shortcut a(y, m, V) = ∑n
i=1
∫
N ( fi|mi, vii) ln sig(yi fi)d fi. As a first step, we

calculate the first derivatives of ln ZB with respect to the posterior moments m and V to derive
necessary conditions for the optimum by equating them with zero.

∂ ln ZB

∂V
=

∂a(y, m, V)

∂V
+

1
2

V−1 − 1
2

K−1 !
= 0 ⇒ V =

(
K−1 − 2Dgdg

∂a
∂V

)−1

∂ ln ZB

∂m
=

∂a(y, m, V)

∂m
−K−1m !

= 0 ⇒ m = K
∂a
∂m

These two expressions are plugged in the original expression for ln ZB using A = (I− 2KΛ)−1

and Λ = Dgdg ∂a
∂V to yield

ln ZB(α, Λ) = a
(

y, Kα, (K−1 − 2Λ)−1
)
+

1
2

ln |A| − 1
2

trA +
n
2
− 1

2
α>Kα.

Our algorithm uses the parameters α, Λ, so we calculate first and second derivatives to imple-
ment Newton’s method.

F.3.0.6 First derivatives w.r.t. parameters α, Λ yielding the gradient

∂ ln ZB

∂λ
=

∂a
∂λ

+ dg(V)− dg(VA>) and
∂ ln ZB

∂α
=

∂a
∂α
−Kα

Only the terms containing derivatives of a need further attention, namely

∂a
∂α

= K
∂a
∂m

and

d (dgV) = dg
[

d
(

K−1 − 2Λ
)−1

]
= 2dg [V dΛ V] = 2dg

[
∑

k
vkv>k dλk

]
= 2 ∑

k
(vk � vk)dλk

= 2 (V�V)dλ⇒ ∂dgV
∂λ>

= 2V�V

∂a
∂λ

= 2(V�V)
∂a(y, m, V)

∂dgV
.

As a last step, the derivatives w.r.t. m and the diagonal part of V yield

∂a
∂mi

=
∫

∂N ( f |mi, vii)

∂mi
ln sig(yi f )d f =

∫ f −mi

vii
N ( f |mi, vii) ln sig(yi f )d f

=
1√
vii

∫
f · N ( f ) ln sig (

√
viiyi f + miyi)d f

∂a
∂vii

=
∫

∂N ( f |mi, vii)

∂vii
ln sig(yi f )d f =

∫  ( f −mi)
2

v
3
2
ii

− 1√
vii

N ( f |mi, vii) ln sig(yi f )d f

=
1

2vii

∫ (
f 2 − 1

)
· N ( f ) ln sig (

√
viiyi f + miyi)d f .

F.3.0.7 Second derivatives w.r.t. parameters α, Λ yielding the Hessian

Again, we proceed in two steps, calculating derivatives w.r.t. α and Λ and by the chain rule
compute those w.r.t. m and V.
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∂2 ln ZB

∂α∂α>
=

∂2a
∂α∂α>

+ K =
∂

∂α

[
∂a

∂m>
∂m
∂α>

]
+ K =

∂

∂α

[
∂a

∂m>
K
]
+ K

=
∂

∂α

[
∂a

∂m>

]
K + K =

∂m>

∂α

∂

∂m

[
∂a

∂m>

]
K + K

= K
∂2a

∂m∂m>
K + K

∂2 ln ZB

∂λ∂α>
=

∂2a
∂λ∂α>

=
∂

∂λ

[
∂a

∂m>

]
K =

∂ (dgV)>

∂λ

∂

∂dgV

[
∂a

∂m>

]
K

= 2V�V
∂2a

∂dgV∂m>
K

∂2 ln ZB

∂λ∂λ>
=

∂2a
∂λ∂λ>

+ 2V� (V−AV> −VA>)

= 2
∂

∂λ

[
∂a

∂ (dgV)>
V�V

]
+ 2V� (V−AV> −VA>)

= 2
∂2a

∂λ∂ (dgV)>
V�V + 2

[
∂a

∂ (dgV)>
∂V�V

∂λi

]
i

+

H︷ ︸︸ ︷
2V� (V−AV> −VA>)

= 2
∂ (dgV)>

∂λ

∂2a

∂dgV∂ (dgV)>
V�V + 4

[
∂a

∂ (dgV)>

(
V� ∂V

∂λi

)]
i

+ H

= 4V�V
∂2a

∂dgV∂ (dgV)>
V�V + 8

[
∂a

∂ (dgV)>

(
V�

(
viv>i

))]
i

+ H

∂2a
∂m2

i
=

∫
∂2N ( f |mi, vii)

∂m2
i

ln sig(yi f )d f =
∫

( f −mi)
2 − cii

v2
ii

N ( f |mi, vii) ln sig(yi f )d f

=
1
vii

∫ (
f 2 − 1

)
· N ( f ) ln sig(

√
viiyi f + miyi)d f

∂2a
∂cii∂mi

=
∫

∂2N ( f |mi, vii)

∂vii∂mi
ln sig(yi f )d f

=
∫

( f −mi)
3 − 3( f −mi)vii

2v3
ii

N ( f |mi, vii) ln sig(yi f )d f

=
1

2v
3
2
ii

∫ (
f 3 − 3 f

)
· N ( f ) ln sig (

√
viiyi f + miyi)d f

∂2a
∂v2

ii
=

∫
∂2N ( f |mi, vii)

∂v2
ii

ln sig(yi f )d f

=
∫

( f −mi)
4 − 6vii( f −mi)

2 + 3v2
ii

4v4
ii

N ( f |mi, vii) ln sig(yi f )d f

=
1

4v2
ii

∫ (
f 4 − 6 f 2 + 3

)
· N ( f ) ln sig(

√
viiyi f + miyi)d f
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F.3.0.8 First derivatives w.r.t. hyperparameters θi

The direct gradient is given by the following equation, where we marked the dependency of
the covariance K on θi by subscripts

∂ ln ZB(α, Λ)

∂θi
= α>

∂Kθ

∂θi

∂a(y, m, V)

∂m
+ dg

(
A

∂Kθ

∂θi
A>
)> ∂a(y, m, V)

∂dgV

+tr
(

A>Λ
∂Kθ

∂θi

)
− tr

(
A

∂Kθ

∂θi
ΛA
)
− 1

2
α>

∂Kθ

∂θi
α.

F.4 Limits of the covariance matrix and marginal likelihood

We investigate the behaviour of the covariance matrix K for extreme length scales `. The ma-
trix is given by [K]ij = σ2

f g(|xi − xj|/`), where g : R → R is monotonously decreasing and
continuous with g(0) = 1 and limt→∞ g(t) = 0. From this definition we have [K]ii = σ2

f . We
define ∆ij := |xi − xj|/` > 0 for i 6= j. From

lim
`→0

[K]ij
i 6=j
= lim

`→0
σ2

f g(|xi − xj|/`) = σ2
f lim

∆ij→∞
g(∆ij) = 0

lim
`→∞

[K]ij
i 6=j
= lim

`→∞
σ2

f g(|xi − xj|/`) = σ2
f lim

∆ij→0
g(∆ij) = 1

we conclude

lim
`→0

K = σ2
f I

lim
`→∞

K = σ2
f 11>.

The sigmoid transfer functions are normalised sig (− fi) + sig ( fi) = 1 and the Gaussian is
symmetric N ( fi) = N (− fi). Consequently, we have

∫
sig (yi fi)N ( fi|0, σ2

f )d fi =
∫

sig ( fi)N ( fi|0, σ2
f )d fi

=
∫ 0

−∞
sig ( fi)N ( fi|0, σ2

f )d fi +
∫ ∞

0
sig ( fi)N ( fi|0, σ2

f )d fi

=
∫ ∞

0
sig (− fi)N (− fi|0, σ2

f )d fi +
∫ ∞

0
sig ( fi)N ( fi|0, σ2

f )d fi

=
∫ ∞

0
[sig (− fi) + sig ( fi)]N ( fi|0, σ2

f )d fi

=
∫ ∞

0
1 · N ( fi|0, σ2

f )d fi =
1
2

(F.2)

The marginal likelihood is given by

Z =
∫

P (y|f)P (f|X, θ)df

=
∫ n

∏
i=1

sig (yi fi) |2πK|− 1
2 exp(−1

2
f>K−1f)df.
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F.4.0.9 Length scale to zero

For K = σ2
f I the prior factorises and we get

Z`→0 =
n

∏
i=1

∫
sig (yi fi)

1√
2πσ2

f

exp(− f 2
i

2σ2
f
)d fi

(F.2)
=

n

∏
i=1

1
2
= 2−n.

F.4.0.10 Length scale to infinity

To get K → σ2
f 11> we write K = σ2

f 1 + ε2I with 1 = 11> and let ε → 0. The eigenvalue
decomposition of K is written as K = ∑n

i=1 uiu>i λi with u1 = 1√
n 1, λ1 = σ2

f + ε2 and all other

λi = ε2.

Z 1
ε

K=UΛU>
=

∫ n

∏
i=1

sig (yi fi) |2πΛ|− 1
2 exp(−1

2
f>UΛ−1U>f)df

t=Λ
− 1

2 U>f
=

∫ n

∏
i=1

sig
(

yi
√

λi · t>ui

)
|2πΛ|− 1

2 exp(−1
2

t>t)
∣∣∣Λ 1

2

∣∣∣dt

=
∫ n

∏
i=1

sig
(

yi
√

λi · t>ui

)
N (ti)dt

=
∫

sig


√

σ2
f + ε2

n
· t>1

N (t1)
n

∏
i=2

[
sig
(

ε · t>ui

)]
N (ti)dt

Z`→∞ = lim
ε→0

Z =
∫

sig
(

σf√
n
· t>1

)
N (t1)

n

∏
i=2

[
1
2

]
N (ti)dt

(F.2)
= 2−n+1

∫
sig
(

σf√
n
· t>1

)
N (t)dt

r=t>1
= 2−n+1

∫
sig
(

σf√
n
· r
)
N (r)dr

(F.2)
= 2−n.

F.4.0.11 Latent scale to zero

We define σ2
f K̃ = K and σf f̃ = f and derive

Zσf =
∫ n

∏
i=1

sig (yi fi) |2πK|− 1
2 exp(−1

2
f>K−1f)df

=
∫ n

∏
i=1

sig
(
yiσf f̃i

)
|2πK|− 1

2 exp(−
σ2

f

2
f̃>K−1f̃)σn

f df̃

=
∫ n

∏
i=1

sig
(
yiσf f̃i

) ∣∣∣2πσ2
f K̃
∣∣∣− 1

2
exp(−

σ2
f

2
f̃>σ−2

f K̃−1f̃)σn
f df̃

=
∫ n

∏
i=1

[
sig
(
yiσf f̃i

)]
N
(
f̃|0, K̃

)
df̃

Zσf→0 = lim
σf→0

Z =
∫ n

∏
i=1

[
1
2

]
N
(
f̃|0, K̃

)
df̃ = 2−n.

Note that the functions, we are using are all well-behaved, so that the limits do exist.
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F.5 Posterior divided by prior = effective likelihood

Q (y|f) =
N (f|m, V)

P (f|X) =
N
(

f|m,
(
K−1 + W

)−1
)

N (f|0, K)

=
N
(
f|m̃, W−1)

N (m̃|0, K + W−1)
, m̃ = (KW)−1 m + m

=
(2π)−

n
2
∣∣W−1

∣∣− 1
2 exp

(
− 1

2 (f− m̃)>W (f− m̃)
)

(2π)−
n
2 |K + W−1|−

1
2 exp

(
− 1

2 m̃> (K + W−1)
−1 m̃

)
=

√
|KW + I|

exp
(
− 1

2 (f− m̃)>W (f− m̃)
)

exp
(
− 1

2 m̃> (K + W−1)
−1 m̃

)
=:

1
ZQ

exp
(
−1

2
(f− m̃)>W (f− m̃)

)
ln ZQ = −1

2
m̃>

(
K + W−1

)−1
m̃− 1

2
ln |KW + I|

F.6 Kullback-Leibler divergence for KL method

We wish to calculate the divergence between the approximate posterior, a Gaussian, and the
true posterior

KL (Q (f|θ) ‖ P (f|y, X, θ)) =
∫
N (f|m, V) ln

N (f|m, V)

P (f|y, X, θ)
df

(4.4)
=

∫
N (f|m, V) ln

Z · N (f|m, V)

N (f|m, V)∏n
i=1 P(yi| fi)

df

= ln Z +
∫
N (f|m, V) lnN (f|m, V)df

−
∫
N (f|m, V) ln

n

∏
i=1

P(yi| fi)df

−
∫
N (f|m, V) lnN (f|0, K)df.

There are three Gaussian integrals to evaluate; the entropy of the approximate posterior
and two other expectations

KL (Q (f|θ) ‖ P (f|y, X, θ)) = ln Z− 1
2

ln |V| − n
2
− n

2
ln 2π

−
∫
N ( f )

[
n

∑
i=1

ln sig (
√

viiyi f + miyi)

]
d f (F.3)

+
n
2

ln 2π +
1
2

ln |K|+ 1
2

m>K−1m +
1
2

tr
(

K−1V
)

.

Summing up and dropping the constant (w.r.t. m and V) terms, we arrive at

KL(m, V)
c
= −

∫
N ( f )

[
n

∑
i=1

ln sig (
√

viiyi f + miyi)

]
d f − 1

2
ln |V|+ 1

2
m>K−1m +

1
2

tr
(

K−1V
)
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F.7 Gaussian integral for VB lower bound

ZVB =
∫

P (f|X)Q (y|f, A, b, c)df =
∫
N (f|0, K) exp

(
f>Af + (b� y)> f + c>1

)
df

=
exp

(
c>1

)√
(2π)n |K|

∫
exp

(
−1

2
f>
(

K−1 − 2A
)

f + (b� y)> f
)

df

=
exp

(
c>1

)√
(2π)n |K|

√
(2π)n

|K−1 − 2A| exp
(

1
2
(b� y)>

(
K−1 − 2A

)−1
(b� y)

)
=

exp
(
c>1

)√
|I− 2AK|

exp
(

1
2
(b� y)>

(
K−1 − 2A

)−1
(b� y)

)
ln ZVB = c>1 +

1
2
(b� y)>

(
K−1 − 2A

)−1
(b� y)− 1

2
ln |I− 2AK|

F.8 Lower bound for the cumulative Gaussian likelihood

A lower bound

sigprobit(yi fi) ≥ Q (yi| fi, ςi) = ai f 2
i + bi fi + ci

for the cumulative Gaussian likelihood function is derived by matching the function at one
point ς

Q (yi = +1| fi, ςi) = sigprobit(ςi), ∀i

and by matching the first derivative

∂

∂ fi
ln Q (yi = +1| fi, ςi)

∣∣∣∣
ςi

=
∂ ln sigprobit(yi fi)

∂ fi
=

N (ςi)

sigprobit(ςi)
, ∀i

at this point for a tight approximation. Solving for these constraints leads to the coefficients

asymptotic behavior⇒ ai = −1
2

first derivative⇒ bi = ςi +
N (ςi)

sigprobit(ςi)

point matching⇒ ci =
(ςi

2
− bi

)
ςi + log sigprobit(ςi).

F.9 Free form optimisation for FV

We make a factorial approximation P (f|y, X) ≈ Q (f) := ∏i Q ( fi) to the posterior by minimis-
ing KL[Q (f) ||P (f)].

KL[Q (f) ||P (f)] =
∫ n

∏
i=1

Q ( fi) ln
Z ·∏n

i=1 Q ( fi)

N (f|m, V)∏n
i=1 P(yi| fi)

df

= ∑
i

∫
Q ( fi) ln

Q ( fi)

P (yi| fi)
d fi +

1
2

∫ n

∏
i=1

Q ( fi) f>K−1fdf + constf

Free-form optimisation proceeds by equating the functional derivative with zero
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δKL
δQ ( fi)

= ln Q ( fi) + 1− ln P (yi| fi) +
1
2

δ

δQ ( fi)

∫ n

∏
i=1

Q ( fi) f>K−1fdf. (F.4)

We abbreviate the integral in the last term with ξ and rewrite it in terms of simple one-dimensional
integrals ml =

∫
flQ ( fl)d fl and vl =

∫
f 2
l Q ( fl)d fl −m2

l

ξ =
∫

∏
i

Q ( fi)∑
j,k

f j

[
K−1

]
jk

fkdf

=
∫

∏
i 6=l

Q ( fi)

[∫
Q ( fl)

(
f 2
l

[
K−1

]
ll
+ 2 fl ∑

j 6=l
f j

[
K−1

]
jl
+ ∑

j 6=l,k 6=l
f j

[
K−1

]
jk

fk

)
d fl

]
df¬l

=
∫

∏
i 6=l

Q ( fi)

[K−1
]

ll

∫
f 2
l Q ( fl)d fl︸ ︷︷ ︸

vl+m2
l

+2(∑
j 6=l

f j

[
K−1

]
jl
)
∫

flQ ( fl)d fl︸ ︷︷ ︸
ml

+ ∑
j 6=l,k 6=l

f j

[
K−1

]
jk

fk

df¬l

=
[
K−1

]
ll
(vl + m2

l ) + 2 ∑
j 6=l

mj

[
K−1

]
jl

ml +
∫

∏
i 6=l

Q ( fi) ∑
j 6=l,k 6=l

f j

[
K−1

]
jk

fkdf¬l

= induction over l
= ∑

l

[
K−1

]
ll
(vl + m2

l ) + 2 ∑
j<l

mj

[
K−1

]
jl

ml .

Plugging this into equation F.4 and using δ
∫

f p
l Q( fl)d fl
δQ( fl)

= f p
l , we find

δKL
δQ ( fi)

= ln Q ( fi) + 1− ln P (yi| fi) +
1
2

fi

[
K−1

]
ii

fi + fi ∑
l

[
K−1

]
il

ml
!≡ 0

⇒ Q ( fi) ∝ exp

(
−1

2
fi

[
K−1

]
ii

fi − fi ∑
l 6=i

[
K−1

]
il

ml

)
P (yi| fi)

⇒ Q ( fi) ∝ N
(

fi

∣∣∣∣∣mi −
[
K−1m

]
i

[K−1]ii
,
[
K−1

]−1

ii

)
P (yi| fi)

as the functional form of the best possible factorial approximation, namely a product of the true
likelihood times a Gaussian with the same precision as the prior marginal.



Appendix G

Adaptive Compressed Sensing of
Natural Images

G.1 Failure of basis pursuit started from wavelet coefficients

In this section, we show that the reconstruction error ε = ‖û− u‖2 of the noise-free L1 method
(basis pursuit: ûBP = arg minu{λ‖u‖1 +

1
2‖Xu− y‖2

2}) without total variation (TV) term can
increase with new measurements if we start from coarse scale wavelet measurements.

Since there is no TV term, we have B = W with W> = W−1 the wavelet transform matrix
leading to ŝBP = arg mins{λ‖s‖1 +

1
2‖XW>s− y‖2

2, s = Wu}. Initially, X = WI , y = WIu + ε,
where I contains the coarse scale wavelet indices. Further, the corresponding initial estimate is
ŝBP = arg min{λ‖sI‖1 + λ‖s¬I‖1 +

1
2‖sI − y‖2

2}, thus ŝ¬I = 0 and ŝI = λ · κ(λ−1y). Here, ¬I is
short for {1, .., n} \ I and

κ(y) =

{
y− sign(y) |y| > 1
0 |y| ≤ 1

= sign(y) ·max (|y| − 1, 0)

is the soft-thresholding rule [Donoho and Johnstone, 1994]. For a new measurement along a unit
norm vector x∗, we define v = Wx∗ and r = y∗ − v>I sI = u>x∗ − v>I sI .

In the noise-free case of λ → 0, the quadratic term dominates and hence ŝI = y implying
a squared error of ε2 = ‖ŝ−Wu‖2

2 = ‖W¬Iu‖2
2. A new measurement (x∗, y∗) does not affect

ŝI = y and we have ŝ¬I = arg min{‖s¬I‖1, v>¬Is¬I = r} for the remaining coefficients. Note
that the constraint v>¬Is¬I = r can always be satisfied by rescaling s¬I

ŝ¬I = arg min
s¬I
{‖s¬I‖1, v>¬Is¬I = r} = arg min

s¬I
{|r/(v>¬Is¬I)| · ‖s¬I‖1}.

To derive an expression for ŝ¬I and to simplify notation, we define s̃ = s¬I and ṽ = v¬I . The
minimum of ‖s̃‖1, satisfying ṽ>s̃ = r, does exist. Assume that ṽ 6= 0 (otherwise s̃ = 0). Let
i = arg max |ṽi| (then, ṽi 6= 0). Suppose that s̃j 6= 0 for j 6= i. Now,

ṽi s̃i + ṽj s̃j = ṽi

(
s̃i +

ṽj

ṽi
s̃j

)
+ ṽj0 and

∣∣∣∣s̃i +
ṽj

ṽi
s̃j

∣∣∣∣ ≤ |s̃i|+
∣∣∣∣ ṽj

ṽi

∣∣∣∣ |s̃j| ≤ |s̃i|+ |s̃j|,

so that ‖s̃‖1 is not increased by setting s̃j = 0 that way. Therefore, the (unique if i is unique)
minimiser is s̃ = r/ṽiei = rei � ṽ−1 or

ŝ¬I =
r

[v¬I ]i
ei, i = arg max

j∈¬I

∣∣∣w>j x∗
∣∣∣ ,

where ei is the ith unit vector. The associated error

ε̃2 = ‖ŝ−Wu‖2
2 = ‖ŝ¬I −W¬Iu‖2

2 = ‖W¬Iu‖2
2 + ŝ>¬I (ŝ¬I − 2W¬Iu)

= ε2 +
r

[v¬I ]i
e>i

(
r

[v¬I ]i
ei − 2W¬Iu

)
= ε2 +

2r2

[v¬I ]2i

(
1
2
− [v¬I ]i[W¬Iu]i

r

)
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does increase whenever x∗ satisfies

ε̃2 > ε2 ⇔ [v¬I ]i · [W¬Iu]i
r

=
si · vi

y∗ − y>WIx∗
=

si · vi

u>W>Wx∗ − y>vI
<

1
2

⇔ 2si · visign(s>v− y>vI) < |s>v− y>vI |
⇔ 2sivi · sign(s>¬Iv¬I) < |s>¬Iv¬I |.

By choosing v¬I = α−1s−1
¬I , α = ‖1/s¬I‖2 > 0, we obtain 2 < n as a necessary condition to

increase the reconstruction error.
Thus, by measuring along a specifically chosen projection x∗, it is actually possible to in-

crease the error even though we have a noise level of σ = 0. Hence, the reconstruction error
ε = ‖ûBP − u‖2 of the basis pursuit estimator without total variation penalty ûBP is not mono-
tonic in the amount of information available about the unknown u.
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